Skip to main content

Surfactants: Chemistry, Toxicity and Remediation

  • Chapter
  • First Online:
Pollutant Diseases, Remediation and Recycling

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 4))

Abstract

Surfactant toxicity has aroused a worldwide alert leading to various regulations on its usage and disposal. In this context much concern arises regarding the biodegradability and eco-friendliness of surfactants. Various reviews on surfactant and its toxicity are available; however there is a lack of a concise review covering surfactant types, primary and secondary toxicity of surfactants, evaluating the level of surfactant pollution worldwide. This chapter describes the safety concerns of surfactants on the aquatic system, terrestrial ecosystem and particularly on humans. We present remediation methods to solve surfactant contamination, such as ozonation, UV radiation, catalyst coupled autooxidation. Biological degradation of surfactants is highlighted with reference to the most commonly used anionic detergents sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LAS). Biodegradation pathways and mechanism are discussed. Green surfactants are presented. Finally the relevance and role of biosurfactants as alternatives to synthetic detergents is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud MM, Khleifat KM, Batarseh M, Tarawneh KA, Al-Mustafa A, Al-Madadhah M (2007) Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme Microb Technol 41:432–439. doi:10.1016/j.enzmictec. 2007.03.011

    CAS  Google Scholar 

  • Abd-Allah AMA (1995) Determination of long chain alkylbenzenes in sediment samples from Alexandria Coast, Egypt. Toxicol Environ Chem 47:83–88. doi:10.1080/02772249509358130

    CAS  Google Scholar 

  • Abel PD (1974) Toxicity of synthetic detergents to fish and aquatic invertebrates. J Fish Biol 6:279–298. doi:10.1111/j.1095-8649.1974.tb04545.x

    CAS  Google Scholar 

  • Abel PD (1976) Toxic action of several lethal concentrations of an anionic detergent on the gills of the brown trout (Salmo trutta L.). J Fish Biol 9:441–446. doi:10.1111/j.1095-8649.1976.tb04692.x

    CAS  Google Scholar 

  • Abel PD, Skidmore JF (1975) Toxic effects of an anionic detergent on the gills of rainbow trout. Water Res 9:759–765. doi:10.1016/0043-1354(75)90068-8

    CAS  Google Scholar 

  • Abu-Hassan MA, Kim JK, Metcalfe IS, Mantzavinos D (2006) Kinetics of low frequency sonodegradation of linear alkylbenzene sulfonate solutions. Chemosphere 62:749–755

    CAS  Google Scholar 

  • Aizdaicher NA, Markina ZV (2006) Toxic effects of detergents on the alga Plagioselmis prolonga (Cryptophyta). Russ J Mar Biol 32:45–49. doi:10.1134/S1063074006010068

    CAS  Google Scholar 

  • Aizdaicher NA, Reunova YA (2002) Effects of detergents on in vitro growth of diatom alga Thalassiosira pseudonana. Russ J Mar Biol 28:324–328. doi:10.1023/A:1020907501713

    CAS  Google Scholar 

  • Allen SL, Allen JM, Licht BM (1965) Effects of Triton X-100 upon the activity of some electrophoretically separated acid phosphatases and esterases. J Histochem Cytochem 13:434–440. doi:10.1177/13.6.434

    CAS  Google Scholar 

  • Amat AM, Arques A, Miranda MA, Segui S (2004) Photo-fenton reaction for the abatement of commercial surfactants in a solar pilot plant. Solar Energy 77:559–566

    CAS  Google Scholar 

  • Ambily PS, Jisha MS (2011) Characterization of Alkyl sulphatase required for the biodegradation of sodium dodecyl sulphate (SDS). Eur J Exp Biol 1:41–49

    CAS  Google Scholar 

  • Ambily PS, Jisha MS (2012) Biodegradation of anionic surfactant, sodium dodecyl sulfate by Pseudomonas aeruginosa MTCC 10311. J Environ Biol 33(4):717–720

    CAS  Google Scholar 

  • Ankley GT, Burkhard LP (1992) Identification of surfactants as toxicants in a primary effluent. Environ Toxicol Chem 11:1235–1248

    CAS  Google Scholar 

  • Ariyoshi T, Hasegawa H, Nanri Y, Arizono K (1990) Profile of hemoproteins and heme-metabolizing enzymes in rats treated with surfactants. Bull Environ Contam Toxicol 44:369–376. doi:10.1007/BF01701217

    CAS  Google Scholar 

  • Ariyoshi T, Hasegawa H, Matsumoto H, Arizono K (1991) Effects of surfactants on the contents of metallothionein, heme and hemoproteins and on the activities of heme oxygenase and drug-metabolizing enzymes in rats pretreated with phenobarbital or β-naphthoflavone. Bull Environ Contam Toxicol 46:120–127. doi:10.1007/BF01688264

    CAS  Google Scholar 

  • Asok AK (2011) Bioremediation of the anionic surfactant linear alkylbenzene sulphonate (las) by Pseudomonas sp. Isolated from soil. PhD thesis. Mahatma Gandhi University, Kottayam, India, p 192

    Google Scholar 

  • Asok AK, Jisha MS (2012a) Biodegradation of the anionic surfactant linear alkylbenzene sulfonate (LAS) by autochthonous Pseudomonas sp. Water Air Soil Pollut 223(8):5039–5048. doi:10.1007/s11270-012-1256-8

    CAS  Google Scholar 

  • Asok AK, Jisha MS (2012b) Assessment of soil microbial toxicity on acute exposure of the anionic surfactant linear alkylbenzene sulfonate. J Environ Sci Technol 5:354–363. doi:10.3923/jest.2012. 354.363

    CAS  Google Scholar 

  • Azizullah A, Richter P, Jamil M, Hader DP (2012) Chronic toxicity of a laundry detergent to the freshwater flagellate Euglena gracilis. Ecotoxicology 21(7):1957–64. doi:10.1007/s10646-012-0930-3

    CAS  Google Scholar 

  • Badot PM, Richard B, Lucot E, Badot MJ, Garrec JP (1995) Water disturbances and needle surface alterations in Pinus halepensis mill. Trees exposed to polluted sea-spray. In: Proceedings of the international symposium ecotoxicology of air compartment, Rouen, France, pp 179–189

    Google Scholar 

  • Bandala ER, Pelaez MA, Salgado MJ, Torres L (2008a) Degradation of sodium dodecyl sulfate in water using solar driven fenton-like advanced oxidation processes. J Hazard Mater 151:578–584. doi:10.1016/j.jhazmat.2007.06.025

    CAS  Google Scholar 

  • Bandala ER, Velasco Y, Torres LG (2008b) Decontamination of soil washing wastewater using solar driven advanced oxidation processes. J Hazard Mater 160:402–407. doi:10.1016/j.jhazmat.2008.03.011

    CAS  Google Scholar 

  • Bantseev V, Mc Canna D, Banh A, Wong WW, Moran KL, Dixon DG, Trevithick JR, Sivak JG (2003) Mechanisms of ocular toxicity using the in vitro bovine lens and sodium dodecyl sulfate as a chemical model. Toxicol Sci 73:98–107. doi:10.1093/toxsci/kfg060

    CAS  Google Scholar 

  • Barbieri E, Ngan PV, Gomes V (1998) The effect of SDS, sodium dodecyl sulfate, on the metabolism and swimming capacity of Cyprinus carpio. Revista brasileira de biologia 58:263–271

    CAS  Google Scholar 

  • Bardach JE, Fujiya M, Holl A (1965) Detergents: effects on the chemical senses of the fish Ictalurus natalis (le Sueur). Science 148:1605–1607

    CAS  Google Scholar 

  • Bateman TJ, Dodgson KS, White GF (1986) Primary alkyl sulfatase activities of the detergent-degrading bacterium Pseudomonas C12 B. Purification and properties of the P1 enzyme. Biochem J 236:401

    CAS  Google Scholar 

  • Behler A, Biermann M, Hill K, Raths HC, Victor MES, Uphues G (2001) Industrial surfactant syntheses. Surfactant Sci Ser 100:1-44

    Google Scholar 

  • Beigel C, Barriuso E, Calvet R (1998) Sorption of low levels of nonionic and anionic surfactants on soil: effects on sorption of triticonazole fungicide. Pestic Sci 54:52–60. doi:10.1002/(SICI)1096-9063(199809)54:1<52::AID-PS779>3.0.CO;2-Z

    CAS  Google Scholar 

  • Beltran FJ, Garcia-Araya JF, Alvarez PM (2000a) Sodium dodecylbenzene sulfonate removal from water and wastewater. Kinetics of decomposition by ozonation. Ind Eng Chem Res 39:2214–2220. doi:10.1021/ie990721a

    CAS  Google Scholar 

  • Beltran FJ, Garcia-Araya JF, Alvarez PM (2000b) Sodium dodecylbenzene sulfonate removal from water and wastewater. Kinetics of the integrated ozone-activated sludge system. Ind Eng Chem Res 39:2221–2227. doi:10.1021/ie9907223

    CAS  Google Scholar 

  • Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 54:283–288. doi:10.1016/S0260-8774(01)00214-X

    Google Scholar 

  • Benvegnu T, Sassi JF (2010) Oligomannuronates from seaweeds as renewable sources for the development of green surfactants. Topp Curr Chem 294:143–164)

    Google Scholar 

  • Berna JL, Ferrer J, Moreno A, Prats D, Ruiz Bevia F (1989) The fate of LAS in the environment. Tenside Surfactants Deterg 26:101–107

    CAS  Google Scholar 

  • Bhardwaj A, Hartland S (1993) Applications of surfactants in petroleum industry. J Dispers Sci Technol 14:87–116. doi:10.1080/01932699308943389

    CAS  Google Scholar 

  • Bhatia M, Singh HD (1996) Biodegradation of commercial linear alkyl benzenes by Nocardia amarae. J Biosci 21:487–496

    CAS  Google Scholar 

  • Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications – a review. J Chem Technol Biotechnol 77:102–116. doi:10.1002/jctb.532

    CAS  Google Scholar 

  • Bhattacharya S, Mandal SS (1997) Interaction of surfactants with DNA. Role of hydrophobicity and surface charge on intercalation and DNA melting. BBA Biomembr 1323:29–44. doi:10.1016/S0005-2736(96)00171-X

    CAS  Google Scholar 

  • Bird JA, Cain RB (1972) Metabolism of linear alkylbenzenesulfonates by a Vibrio sp. Biochem J 127(2):46

    Google Scholar 

  • Boonyasuwat S, Chavadej S, Malakul P, Scamehorn JF (2005) Surfactant recovery from water using a multistage foam fractionator: Part I effects of air flow rate, foam height, feed flow rate and number of stages. Sep Sci Technol 40:1835–1853

    CAS  Google Scholar 

  • Braaten B, Granmo A, Lange R (1972) Tissue swelling in Mytilus edulis L. induced by exposure to a nonionic surface active agent. Nor J Zool 20:137–140

    CAS  Google Scholar 

  • Brandt KK, Hesselso M, Roslev P, Henriksen K, So J (2001) Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol 67:2489–2498

    CAS  Google Scholar 

  • Bravo RV, Jurado AE, Francisco MGJ, Reyes RA, Garcia LAI, Sampaio CJM, Fernandes P, Joaquim PFLJ (2006) Modification of the activity of an α-amylase from Bacillus licheniformis by several surfactants. Electron J Biotech 9(5):566–567

    Google Scholar 

  • Bubenheim D, Wignarajah K, Berry W, Wydeven T (1997) Phytotoxic effects of gray water due to surfactants. J Am Soc Hortic Sci 122:792–796

    Google Scholar 

  • Burnett CL, Bergfeld WF, Belsito DV, Klaassen CD, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA (2011) Final report on the safety assessment of Cocos nucifera (coconut) oil and related ingredients. Int J Toxicol 30:5S–16S. doi:10.1177/1091581811400636

    CAS  Google Scholar 

  • Carlsen L, Metzon MB, Kjelsmark J (2002) Linear alkylbenzene sulfonates (LAS) in the terrestrial environment. Sci Total Environ 290:225–230

    CAS  Google Scholar 

  • Carswell ADW, Edgar AOR, Grady BP (2003) Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J Am Chem Soc 125:14793–14800. doi:10.1021/ja0365983

    CAS  Google Scholar 

  • Casas JA, Garcia-Ochoa F (1999) Sophorolipid production by Candida bombicola : medium composition and culture methods. J Biosci Bioeng 88:488–494. doi:10.1016/S1389-1723(00)87664-1

    CAS  Google Scholar 

  • Casellato S, Negrisolo P (1989) Acute and chronic effects of an anionic surfactant on some freshwater tubificid species. Hydrobiologia 180:243–252

    CAS  Google Scholar 

  • Cater KC, Harbell JW (2006) Prediction of eye irritation potential of surfactant-based rinse-off personal care formulations by the bovine corneal opacity and permeability (BCOP) assay. Cutan Ocul Toxicol 25:217–233

    CAS  Google Scholar 

  • Chahine L, Sempson N, Wagoner C (1997) The effect of sodium lauryl sulfate on recurrent aphthous ulcers: a clinical study. Compend Contin Educ Dent 18(12):1238–1240

    CAS  Google Scholar 

  • Chaturvedi V, Kumar A (2010a) Bacterial utilization of sodium dodecyl sulfate. Int J Appl Biol Pharm Tech 3:1126–1131

    Google Scholar 

  • Chaturvedi V, Kumar A (2010b) Isolation of sodium dodecyl sulfate degrading strains from a detergent polluted pond situated in Varanasi city, India. J Cell Mol Biol 2:103–111

    Google Scholar 

  • Chaturvedi V, Kumar A (2010c) Toxicity of sodium dodecyl sulfate in fishes and animals a review. Int J Appl Biol Pharm Tech 2:630–633

    Google Scholar 

  • Chaturvedi V, Kumar A (2011a) Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int Biodeterior Biodegrad 65:961–971

    CAS  Google Scholar 

  • Chaturvedi V, Kumar A (2011b) Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergent sodium dodecyl sulfate (SDS). Iran J Microbiol 3:47–53

    CAS  Google Scholar 

  • Chaudhury BL, Meena L (2007) A environmental hazard – a case study of toxic bloom of Microcystis (Anacystis) spp. in Udaipur lakes, Rajasthan (India). J Herb Med Toxicol 1:55–59

    Google Scholar 

  • Chen J, Song X, Zhang H, Qu Y, Miao J (2006) Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol 72:52–59. doi:10.1007/s00253-005-0243-z

    CAS  Google Scholar 

  • Chen M, Huang S, Wang J (2008) Research of the present situation and development of nonionic surfactants used in pesticide in our country. Mod Agrochem 7:6

    CAS  Google Scholar 

  • Chistyakov BE (2001) Theory and practical application aspects of surfactants. In: Fainerman VB, Mobius D, Miller R (eds) Surfactants chemistry, interfacial properties, applications. Studies in Interface Science 13:511–618

    Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929. doi:10.1046/j.1365-2672. 2002.01774

    CAS  Google Scholar 

  • Chu W, Kwan CY (2003) Remediation of contaminated soil by a solvent/surfactant system. Chemosphere 53:9–15

    CAS  Google Scholar 

  • Cirelli AF, Ojeda C (2008) Wastewater management in Greater Buenos Aires, Argentina. Desalination 218:52–61

    CAS  Google Scholar 

  • CIRSL Sulfate (1983) Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate. J Am Coll Toxicol 2:127–181. doi:10.3109/10915818309142005

    Google Scholar 

  • Clausen SK, Sobhani S, Poulsen OM, Poulsen LK, Nielsen GD (2000) Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps. Food Chem Toxicol 38:1065–1074. doi:10.1016/S0278-6915(00)00092-2

    CAS  Google Scholar 

  • Cloves JM, Dodgson KS, White GF, Fitzgerald JW (1980) Specificity of P2 primary alkylsulfohydrolase induction in the detergent-degrading bacterium Pseudomonas C12B – effects of alkanesulfonates, alkyl sulfates and other related compounds. Biochem J 185:13

    CAS  Google Scholar 

  • Conry T (1980) Consumer’s guide to cosmetics. Ancor Press/Doubleday, Garden City, p 74

    Google Scholar 

  • Cook TM, Goldman CK (1974) Degradation of anionic detergents in Chesapeake Bay. Chesap Sci 15:52–55

    CAS  Google Scholar 

  • Cooper KJ, Earl LK, Harbell J, Raabe H (2001) Prediction of ocular irritancy of prototype shampoo formulations by the isolated rabbit eye (IRE) test and bovine corneal opacity and permeability (BCOP) assay. Toxicol In Vitro 15:95–103

    CAS  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    CAS  Google Scholar 

  • Corre G, Templier J, Largeau C, Rousseau B, Berkaloff C (1996) Influence of cell wall composition on the resistance of two Chlorella species (Chlorophyta) to detergents1. J Phycol 32:584–590

    CAS  Google Scholar 

  • Cosovic B, Zutic V, Vojvodic V, Plese T (1985) Determination of surfactant activity and anionic detergents in seawater and sea surface microlayer in the Mediterranean. Mar Chem 17:127–139

    CAS  Google Scholar 

  • Cserhati T, Forgacs E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. J Appl Microbiol 102:195–203

    CAS  Google Scholar 

  • Davila AM, Marchal R, Vandecasteele JP (1997) Sophorose lipid fermentation with differentiated substrate supply for growth and production phases. Appl Microbiol Biotechnol 47:496–501

    CAS  Google Scholar 

  • Davison J, Brunel F, Phanopoulos A, Prozzi D, Terpstra P (1992) Cloning and sequencing of Pseudomonas genes determining sodium dodecyl sulfate biodegradation. Gene 114:19–24

    CAS  Google Scholar 

  • De Neve G (2009) Power, inequality and corporate social responsibility: the politics of ethical compliance in the South Indian garment industry. Econ Polit Wkly 44:63–71

    Google Scholar 

  • De Oliveira LL, Costa RB, Okada DY, Vich DV, Duarte IC, Silva EL, Varesche MB (2010) Anaerobic degradation of linear alkylbenzene sulfonate (LAS) in fluidized bed reactor by microbial consortia in different support materials. Bioresour Technol 101:5112–5122. doi:10.1016/j.biortech.2010. 01.141

    Google Scholar 

  • Dehghani MH, Najafpoor AA, Azam K (2010) Using sonochemical reactor for degradation of LAS from effluent of wastewater treatment plant. Desalination 250:82–86

    CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Deschenes L, Lafrance P, Villeneuve JP, Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46:638–646

    CAS  Google Scholar 

  • Dietrich MJ, Randall TL, Canney PJ (1985) Wet air oxidation of hazardous organics in wastewater. Environ Prog 4:171–177

    CAS  Google Scholar 

  • Diriligen N, Ince N (1995) Inhibition effect of the anionic surfactant SDS on duckweed, LEMNA minor with considerations of growth and accumulation. Chemosphere 31:4185–4196

    Google Scholar 

  • Doyle C (2010) Powerful choices podcast: dispelling cancer myths. www.cancer.org

  • Eagle SC, Barry BW, Scott RC (1992) Differential scanning calorimetry and permeation studies to examine surfactant damage to human skin. Cutan Ocul Toxicol 11:77–90

    CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Eichhorn P, Rodrigues SV, Baumann W, Knepper TP (2002) Incomplete degradation of linear alkylbenzene sulfonate surfactants in Brazilian surface waters and pursuit of their polar metabolites in drinking waters. Sci Total Environ 284:123–134

    CAS  Google Scholar 

  • Elsgaard L, Petersen SO, Debosz K (2001) Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time. Environ Toxicol Chem 20:1664–1672

    CAS  Google Scholar 

  • Eniola KT (2012) Effect of nitrogen supplementation on aerobic degradation of LAS by consortia of bacteria. J Xenobiotics 2(1):24–27

    Google Scholar 

  • Enomoto R, Suzuki C, Ohno M, Ohasi T, Futagami R, Ishikawa K, Komae M, Nishino T, Konishi Y, Lee E (2007) Cationic surfactants induce apoptosis in normal and cancer cells. Ann N Y Acad Sci 1095:1–6

    CAS  Google Scholar 

  • Fainerman VB, Mobius D, Miller R (2001) Surfactants: chemistry, interfacial properties, applications. Studies in Interface Science 13:1–661

    Google Scholar 

  • Farzaneh H, Fereidon M, Noor A, Naser G (2010) Biodegradation of dodecylbenzene sulfonate sodium by Stenotrophomonas maltophilia biofilm. Afr J Biotechnol 9:55–62

    CAS  Google Scholar 

  • Feitkenhauer H, Meyer U (2002) Anaerobic digestion of alcohol sulfate (anionic surfactant) rich wastewater batch experiments. Part II: influence of the hydrophobic chain length. Bioresour Technol 82:123–129

    CAS  Google Scholar 

  • Field JA, Leenheer JA, Thorn KA, Barber LLB, Rostad C, Macalady DL, Daniel SR (1992) Identification of persistent anionic surfactant-derived chemicals in sewage effluent and groundwater. J Contam Hydrol 9:55–78

    CAS  Google Scholar 

  • Fitzgerald JW (1975) Secondary alkylsulfatases in a strain of Comamonas terrigena. Biochem J 149:477

    CAS  Google Scholar 

  • Florence AT, Attwood D (2011) Physicochemical principles of pharmacy, 5th edn. Pharmaceutical Press, Royal Pharmaceutical Society, London

    Google Scholar 

  • Foley PM, Beach ES, Zimmerman JB (2011) Algae as a source of renewable chemicals: opportunities and challenges. Green Chem 13:1399–1405

    CAS  Google Scholar 

  • Foley P, Beach ES, Zimmerman JB (2012) Derivation and synthesis of renewable surfactants. Chem Soc Rev 41:1499–1518

    CAS  Google Scholar 

  • Forsyth FR (1964) Surfactants as fungicides. Can J Bot 42:1335–1347

    CAS  Google Scholar 

  • Fountain JC, Klimek A, Beikirch MG, Middleton TM (1991) The use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer. J Hazard Mater 28:295–311

    CAS  Google Scholar 

  • Fountain JC, Starr RC, Middleton T, Beikirch M, Taylor C, Hodge D (1996) A controlled field test of surfactant enhanced aquifer remediation. Ground Water 34:910–916

    CAS  Google Scholar 

  • Fox K, Holt M, Daniel M, Buckland H, Guymer I (2000) Removal of linear alkylbenzene sulfonate from a small Yorkshire stream: contribution to great-er project 7. Sci Total Environ 251:265–275

    Google Scholar 

  • Frazier Jr RH, Kuehne DL, Horn Jr W, Cantor J (1993) Method for enhancing the recovery of petroleum from an oil-bearing formation using a mixture including anionic and cationic surfactants. US patent 5,246,072

    Google Scholar 

  • Furrer P, Plazonnet B, Mayer JM, Gurny R (2000) Application of in vivo confocal microscopy to the objective evaluation of ocular irritation induced by surfactants. Int J Pharm 207:89–98

    CAS  Google Scholar 

  • Gadallah MAA (1996) Phytotoxic effects of industrial and sewage waste waters on growth, chlorophyll content, transpiration rate and relative water content of potted sunflower plants. Water Air Soil Pollut 89:33–47

    CAS  Google Scholar 

  • Gadler P, Faber K (2007) New enzymes for biotransformations: microbial alkyl sulfatases displaying stereo-and enantioselectivity. Trends Biotechnol 25:83–88

    CAS  Google Scholar 

  • Georgia FR, Poe CF (1931) Study of Bacterial fluorescence in various media: I. Inorganic substances necessary for bacterial fluorescence. J Bacteriol 22:349

    CAS  Google Scholar 

  • Georgiou G, Lin SC, Sharma MM (1992) Surface-active compounds from microorganisms. Biotechnology 10:60–65

    CAS  Google Scholar 

  • Ghai VU (2011) Say no to chemical detergents. http://EzineArticles.com/?expert=Vineet_U_Ghai

  • Ghazali R (2002) The effect of disalt on the biodegradability of methyl ester sulfonates (MES). J Oil Palm Res 14:45–50

    CAS  Google Scholar 

  • Ghodrat M (2006) Lung surfactants. Am J Health Syst Pharm 63:1504–1521

    CAS  Google Scholar 

  • Giannis A, Gidarakos E, Skouta A (2007) Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Desalination 211:249–260

    CAS  Google Scholar 

  • Ginkel CG (1989) Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7:151–164

    Google Scholar 

  • Goel G, Kaur S (2012) A study on chemical contamination of water due to household laundry detergents. J Hum Ecol 38:65–69

    Google Scholar 

  • Gonzalez S, Lopez-Roldan R, Cortina JL (2012) Presence and biological effects of emerging contaminants in Llobregat River basin: a review. Environ Pollut 161:83–92. doi:10.1016/j.envpol.2011.10.002

    CAS  Google Scholar 

  • Gonzalez-Mazo E, Leon VM, Saez M, Gomez-Parra A (2002) Occurrence and distribution of linear alkylbenzene sulfonates and sulfophenylcarboxylic acids in several Iberian littoral ecosystems. Sci Total Environ 288:215–226

    CAS  Google Scholar 

  • Goodwin RM, McBrydie HM (2000) Effect of surfactants on honey bee survival. N Z Plant Prot 53:230–234

    CAS  Google Scholar 

  • Grant RL, Yao C, Gabaldon D, Acosta D (1992) Evaluation of surfactant cytotoxicity potential by primary cultures of ocular tissues: I. Characterization of rabbit corneal epithelial cells and initial injury and delayed toxicity studies. Toxicology 76:153–176

    CAS  Google Scholar 

  • Guilmanov V, Ballistreri A, Impallomeni G, Gross RA (2002) Oxygen transfer rate and sophorose lipid production by Candida bombicola. Biotechnol Bioeng 77:489–494

    CAS  Google Scholar 

  • Gunther P, Pestemer W (1992) Phytotoxicity of surfactants to higher plants. In: Hall JE, Sauerbeck DE, Hermit P (eds) Effects of organic contaminants in sewage sludge on soil fertility, plants and animals. 103–111

    Google Scholar 

  • Guo A, Javni I, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473

    CAS  Google Scholar 

  • Hall WS, Patoczka JB, Mirenda RJ, Porter BA, Miller E (1989) Acute toxicity of industrial surfactants to Mysidopsis bahia. Arch Environ Contam Toxicol 18:765–772

    CAS  Google Scholar 

  • Hari AC, Paruchuri RA, Sabatini DA, Kibbey TCG (2005) Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material. Environ Sci Technol 39:2592–2598

    CAS  Google Scholar 

  • Hashim MA, Kulandai J (1988) Biodegradation of a recalcitrant detergent Wastewater. In: Chemeca 88: Australia’s bicentennial international conference for the process industries. Institution of Engineers, Barton; preprints of papers, p 107.

    Google Scholar 

  • Hayes DG (2012) Bioprocessing Approaches to synthesize bio-based surfactants and detergents. In: Food and industrial bioproducts and bioprocessing. Wiley-Blackwell, Ames, pp 243–266

    Google Scholar 

  • Hashim MA, Kulandai J (1988) Biodegradation of a recalcitrant detergent Wastewater. In: Chemeca 88: Australia’s bicentennial international conference for the process industries. Institution of Engineers, Barton; preprints of papers, p 107

    Google Scholar 

  • Hidaka H (1998) Photodegradation of surfactants with TiO2 semiconductor for the environmental wastewater treatment. J Chem Sci 110:215–228

    CAS  Google Scholar 

  • Hill K (2000) Fats and oils as oleochemical raw materials. Pure Appl Chem 72:1255–1264

    CAS  Google Scholar 

  • Hill K, Rhode O (1999) Sugar-based surfactants for consumer products and technical applications. Fett-Lipid 101:25–33

    CAS  Google Scholar 

  • Hoffman FA, Bishop JW (1994) Impacts of a phosphate detergent ban on concentrations of phosphorus in the James River, Virginia. Water Res 28:1239–1240

    CAS  Google Scholar 

  • Holland PM, Rubingh DN (1992) Mixed surfactants systems. In: Mixed surfactant systems, vol 50, ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  • Holt MS, Matthus E, Waters J (1989) The concentrations and fate of linear alkylbenzene sulfonate in sludge amended soils. Water Res 23:749–759

    CAS  Google Scholar 

  • Hosseini F, Malekzadeh F, Amirmozafari N, Ghaemi N (2007) Biodegradation of anionic surfactants by isolated bacteria from activated sludge. Int J Environ Sci Tech 4:127–132

    CAS  Google Scholar 

  • Hrabak A, Antoni F, Szabo MT (1982) Damaging effect of detergents on human lymphocytes. Bull Environ Contam Toxicol 28:504–511

    CAS  Google Scholar 

  • Hsu YC (1963) Detergent (sodium lauryl sulfate)-splitting enzyme from bacteria. Nature 200:1091–1092. doi:10.1038/2001091b0

    CAS  Google Scholar 

  • Huang L, Hao L, Yuan J, Liu Y, An Q (2010) Research progress on preparation and application of silicone surfactants for pesticide adjuvants. Silicone Material 1:014

    Google Scholar 

  • Huddleston RL, Allred RC (1963) Microbial oxidation of sulfonated alkylbenzenes. Dev Ind Microbiol 4:24–38

    Google Scholar 

  • Ikehata K, El-Din MG (2004) Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 26:327–343. doi:10.1080/01919510490482160

    CAS  Google Scholar 

  • Ilardi JM, Schwartzkopf G, Dailey GG (1995) pH adjusted nonionic surfactant-containing alkaline cleaner composition for cleaning microelectronics substrates. United States J. T. Baker Inc., Phillipsburg, 5466389. http://www.freepatentsonline.com/5466389.html

  • Imai T, Tsuchiya S, Morita K, Fujimori T (1994) Surface tension-dependent surfactant toxicity on the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Appl Entomol Zool 29:389–393

    CAS  Google Scholar 

  • Infante MR, Perez L, Pinazo A, Clapes P, Moran MC, Angelet M, Garcia MT, Vinardell MP (2004) Amino acid-based surfactants. C R Chimie 7:583–592. doi:10.1016/j. crci.2004.02.009

    CAS  Google Scholar 

  • International Program on Chemical Safety – IPCS (1996) Linear alkylbenzene sulfonates and related compounds. http://www.inchem.org/documents/ehc/ehc/ehc169.htm

  • Ishigami Y, Suzuki S (1997) Development of biochemicals-functionalization of biosurfactants and natural dyes. Prog Org Coat 31:51–61

    CAS  Google Scholar 

  • Issa AA, Ismail MA (1994) Effects of detergents on River Nile water microflora. J Islam Acad Sci 7(3):157–162

    Google Scholar 

  • Ivankovic T, Hrenovic J, Gudelj I (2009) Toxicity of commercial surfactants to phosphate-accumulating bacterium. Acta Chim Slov 56:1003–1009

    CAS  Google Scholar 

  • Jensen J (1999) Fate and effects of linear alkylbenzene sulfonates (LAS) in the terrestrial environment. Sci Total Environ 226:93–111. doi:10.1016/S0048-9697(98)00395-7

    CAS  Google Scholar 

  • Jing-xin Y (2004) Application of phosphate-type surfactants in the textile industry. Textile auxiliaries 3:008

    Google Scholar 

  • Jovanic BR, Bojovic S, Panic B, Radenkovic B, Despotovic M (2010) The effect of detergent as polluting agent on the photosynthetic activity and chlorophyll content in bean leaves. Health 2:395–399

    Google Scholar 

  • Jovcic B, Venturi V, Davison J, Topisirovic L, Kojic M (2010) Regulation of the sdsA alkyl sulfatase of Pseudomonas sp. ATCC 19151 and its involvement in degradation of anionic surfactants. J Appl Microbiol 109:1076–1083

    CAS  Google Scholar 

  • Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373

    CAS  Google Scholar 

  • Kanchi S, Niranjan T, Babu Naidu K, Naidu Venkatasubba N (2012) Monitoring the Status of anionic surfactants in various water systems in urban and rural areas of Tirupati, Andhra Pradesh, South India. Int J Res Chem Environ 2:144–156

    CAS  Google Scholar 

  • Kantin R, Baumgarten MGZ, Cabeda M, Beaumord AC, De Almeida TL (1981) Concentration of anionic detergents in Rio Grande water (south Brazil). Mar Pollut Bull 12:50–53

    CAS  Google Scholar 

  • Kapoor Y, Howell BA, Chauhan A (2009) Liposome assay for evaluating ocular toxicity of surfactants. Invest Ophthalmol Vis Sci 50:2727–2735

    Google Scholar 

  • Karsa DR (1990) Industrial applications of surfactants. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Khalladi R, Benhabiles O, Bentahar F, Moulai-Mostefa N (2009) Surfactant remediation of diesel fuel polluted soil. J Hazard Mater 164:1179–1184

    CAS  Google Scholar 

  • Khurana R (2002) Detergents: counting the cost of cleanliness. Toxic Link Fact Sheet 16:1–4

    Google Scholar 

  • Klebensberger J, Rui O, Fritz E, Schink B, Philipp B (2006) Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch Microbiol 185:417–427

    CAS  Google Scholar 

  • Knud-Hansen C (1994) Historical perspective of the phosphate detergent conflict. http://www.colorado.edu/conflict/full_text_search/AllCRCDocs/94-54.htm

  • Konnecker G, Regelmann J, Belanger S, Gamon K, Sedlak R (2011) Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties. Ecotoxicol Environ Saf 74(6):1445–1460. doi:10.1016/j.ecoenv.2011.04.015

    Google Scholar 

  • Korzenowski C, Martins MBO, Bernardes AM, Ferreira JZ, Duarte ECNF, De Pinho MN (2012) Removal of anionic surfactants by nanofiltration. Desalin Water Treat 44:269–275

    CAS  Google Scholar 

  • Kostal J, Suchanek M, Klierova H, Demnerova K, Kralova B, McBeth DL (1998) Pseudomonas C12B, an SDS degrading strain, harbours a plasmid coding for degradation of medium chain length n-alkanes. Int Biodeter Biodegrad 42:221–228

    CAS  Google Scholar 

  • Kotani M, Masamoto Y, Watanabe M (1994) An alternative study of the skin irritant effect of an homologous series of surfactants. Toxicol In Vitro 8:229–233

    CAS  Google Scholar 

  • Kralova I, Sjoblom J (2009) Surfactants used in food industry: a review. J Dispers Sci Technol 30:1363–1383

    CAS  Google Scholar 

  • Krishnakumar R (2010) A lake’s last sigh?. Frontline 27 (11):04

    Google Scholar 

  • Kristiansen IB, de Jonge H, Nornberg P, Mather-Christensen O, Elsgaard L (2003) Sorption of linear alkylbenzene sulfonate to soil components and effects on microbial iron reduction. Environ Toxicol Chem 22:1221–1228

    CAS  Google Scholar 

  • Kuhm AE, Stolz A, Ngai KL, Knackmuss HJ (1991) Purification and characterization of a 1, 2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids. J Bacteriol 173:3795–3802

    CAS  Google Scholar 

  • Kuhnt G (1993) Behavior and fate of surfactants in soil. Environ Toxicol Chem 12:1813–1820

    CAS  Google Scholar 

  • Kumar CG, Mamidyala SK (2011) Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 84(2):462–466. doi:10.1016/j.colsurfb.2011.01.042

    CAS  Google Scholar 

  • Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Coll Interface Sci 7:12–20

    CAS  Google Scholar 

  • Lara-Martin PA, Gomez-Parra A, Gonzalez-Mazo E (2008) Sources, transport and reactivity of anionic and non-ionic surfactants in several aquatic ecosystems in SW Spain: a comparative study. Environ Pollut 156:36–45

    CAS  Google Scholar 

  • Lee BKH (1970) The effect of anionic and nonionic detergents on soil microfungi. Can J Bot 48:583–589

    CAS  Google Scholar 

  • Lewis MA (1990) Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicol Environ Safe 20:123–140

    CAS  Google Scholar 

  • Lewis MA (1991) Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment. Water Res 25:101–113

    CAS  Google Scholar 

  • Lewis MA (1992) The effects of mixtures and other environmental modifying factors on the toxicities of surfactants to freshwater and marine life. Water Res 26:1013–1023

    CAS  Google Scholar 

  • Lewis MA, Hamm BG (1986) Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory-field comparison. Water Res 20:1575–1582

    CAS  Google Scholar 

  • Li M-H (2008) Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 70:1796–1803

    CAS  Google Scholar 

  • Li Z, Zhang Z, Zhang X, Li H (2009) Application of surfactants in pesticide water dispersible granule. China Surfactant Deterg Cosmet 39(227):50–54

    Google Scholar 

  • Lijun X, Bochu W, Zhimin L, Chuanren D, Qinghong W, Liu L (2005) Linear alkyl benzene sulfonate (LAS) degradation by immobilized Pseudomonas aeruginosa under low intensity ultrasound. Colloids Surf B Biointerfaces 40:25–29

    Google Scholar 

  • Lillis V, Dodgson KS, White GF, Payne WJ (1983) Initiation of activation of a preemergent herbicide by a novel alkylsulfatase of Pseudomonas putida FLA. Appl Environ Microbiol 46:988–994

    CAS  Google Scholar 

  • Lima TM, Procopio LC, Brandao FD, Leao BA, Totola MR, Borges AC (2011) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour Technol 102:2957–2964

    CAS  Google Scholar 

  • Lindman B, Thalberg K (1992) Polymer-surfactant interactions-recent developments. In: Goddard ED, Ananthapadmanabhan KP (eds) Interactions of surfactants with polymers and proteins. CRC Press, Boca Raton, pp 203–276

    Google Scholar 

  • Litz N, Doering HW, Thiele M, Blume HP (1987) The behavior of linear alkylbenzenesulfonate in different soils: a comparison between field and laboratory studies. Ecotoxicol Environ Saf 14:103–116

    CAS  Google Scholar 

  • Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A, Kalka J (2005) Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere 58:1249–1253

    CAS  Google Scholar 

  • Long M, Ruan L, Li F, Yu Z, Xu X (2011) Heterologous expression and characterization of a recombinant thermostable alkylsulfatase (sdsAP). Extremophiles 15:293–301

    CAS  Google Scholar 

  • Lopez J, Iturbe R, Torres LG (2005) Washing of soil contaminated with PAHs and heavy petroleum fractions using two anionic and one ionic surfactant: effect of salt addition. J Environ Sci Health A 39:2293–2306

    Google Scholar 

  • Lopez-Vizcaino R, Saez C, Canzares P, Rodrigo MA (2012) Electrocoagulation of the effluents from surfactant-aided soil-remediation processes. Sep Purif Technol 98:88–93

    CAS  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:1–19

    Google Scholar 

  • Maksimov VN, Parshikova TV (2006) Influence of surfactants on the photosynthetic activity of algae. Hydrobiol J 42:67–76

    Google Scholar 

  • Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648

    CAS  Google Scholar 

  • Manousaki E, Psillakis E, Kalogerakis N, Mantzavinos D (2004) Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Res 38:3751–3759

    CAS  Google Scholar 

  • Mantzavinos D, Burrows DM, Willey R, Lo Biundo G, Zhang SF, Livingston AG, Metcalfe IS (2001) Chemical treatment of an anionic surfactant wastewater: electrospray-MS studies of intermediates and effect on aerobic biodegradability. Water Res 35:3337–3344

    CAS  Google Scholar 

  • Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34(9):1597–1605. doi:10.1007/s10529-012-0956-x

    CAS  Google Scholar 

  • Marcomini A, Pojana G, Sfriso A, Alonso JMQ (2000) Behavior of anionic and nonionic surfactants and their persistent metabolites in the Venice Lagoon, Italy. Environ Toxicol Chem 19(8):2000–2007

    CAS  Google Scholar 

  • Marin MG, Pivotti L, Campesan G, Turchetto M, Tallandini L (1994) Effects and fate of sediment-sorbed linear alkylbenzene sulfonate (LAS) on the bivalve mollusc Mytilus galloprovincialis Lmk. Water Res 28:85–90

    CAS  Google Scholar 

  • Marrakchi S, Maibach HI (2006) Sodium lauryl sulfate-induced irritation in the human face: regional and age-related differences. Skin Pharmacol Physiol 19:177–180

    CAS  Google Scholar 

  • Matsui S, Park H (2000) Morphological effects and ecotoxicity of nonionic and anionic surfactants to Closterium ehrenbergii using AGZI (algal growth and zygospore inhibition) test. Environ Eng Res 5(2):63–69

    Google Scholar 

  • Matthijs E, Holt MS, Kiewiet A, Rijs GBJ (1999) Environmental monitoring for linear alkylbenzene sulfonate, alcohol ethoxylate, alcohol ethoxy sulfate, alcohol sulfate, and soap. Environ Toxicol Chem 18:2634–2644

    CAS  Google Scholar 

  • McNamee P, Hibatallah J, Costabel-Farkas M, Goebel C, Araki D, Dufour E, Hewitt NJ, Jones P, Kirst A, Le Varlet B, Macfarlane M, Marrec-Fairley M, Rowland J, Schellauf F, Scheel J (2009) A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: eye irritation. Regul Toxicol Pharmacol 54:197–209

    CAS  Google Scholar 

  • Medha MJ, Lee S (1996) Optimization of surfactant-aided remediation of industrially contaminated soils. Energy Sources 18:291–301

    Google Scholar 

  • Mehrvar M, Tabrizi GB (2006) Combined photochemical and biological processes for the treatment of linear alkylbenzene sulfonate in water. J Environ Sci Health Part A 41:581–597

    CAS  Google Scholar 

  • Mendez-Diaz JD, Sanchez-Polo M, Rivera-Utrilla J, Bautista-Toledo MI (2009) Effectiveness of different oxidizing agents for removing sodium dodecyl benzene sulfonate in aqueous systems. Water Res 43:1621–1629

    CAS  Google Scholar 

  • Mercade ME, Manresa MA, Robert M, Espuny MJ, De Andres C, Guinea J (1993) Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour Technol 43:1–6

    CAS  Google Scholar 

  • Merta J, Stenius P (1999) Interactions between cationic starch and mixed anionic surfactants. Colloids Surf A Physicochem Eng Asp 149:367–377

    CAS  Google Scholar 

  • Minareci O, Ozturk M, Egemen O, Minareci E (2009) Detergent and phosphate pollution in Gediz River, Turkey. Afr J Biotechnol 8:3568–3575

    CAS  Google Scholar 

  • Mireles JR, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    CAS  Google Scholar 

  • Mishra V, Lal R (2001) Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol 27:133–166

    CAS  Google Scholar 

  • Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75:1267–1274

    CAS  Google Scholar 

  • Mortazavi SB, Khavanin A, Moussavi G, Azhdarpoor A (2008) Removal of sodium dodecyl sulfate in an intermittent cycle extended aeration system. Pak J Biol Sci 11:290–293

    CAS  Google Scholar 

  • Mukherjee AK (2007) Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 45:330–335

    CAS  Google Scholar 

  • Muller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91(2):251–264. doi:10.1007/s00253-011-3368-2

    Google Scholar 

  • Mungray AK, Kumar P (2008) Occurrence of anionic surfactants in treated sewage: risk assessment to aquatic environment. J Hazard Mater 160:362–370

    CAS  Google Scholar 

  • Mungray AK, Kumar P (2009) Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeterior Biodegrad 63:981–987

    CAS  Google Scholar 

  • Muramoto S, Oki Y (1988) Effects of surface active agents on the salinity tolerance of water hyacinth (Eichhornia crassipes). J Environ Sci Health A 23:603–611

    Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–747

    CAS  Google Scholar 

  • Myers D, Wiley J (2001) Surfactant science and technology, 3rd edn. Wiley Online Library, New York

    Google Scholar 

  • Naldoni A, Schiboula A, Bianchi C, Bremner D (2011) Mineralisation of surfactants using ultrasound and the advanced Fenton process. Water Air Soil Pollut 215:487–495

    CAS  Google Scholar 

  • Nguyen TT, Sabatini DA (2009) Formulating alcohol-free microemulsions using rhamnolipid biosurfactant and rhamnolipid mixtures. J Surfactants Deterg 12:109–115

    CAS  Google Scholar 

  • Nielsen AD, Borch K, Westh P (2000) Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. BBA Protein Struct Mol Enzymol 1479:321–331

    CAS  Google Scholar 

  • Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol 112:163–172

    CAS  Google Scholar 

  • Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    CAS  Google Scholar 

  • Ostroumov SA (2003) Studying effects of some surfactants and detergents on filter-feeding bivalves. Hydrobiologia 500:341–344

    CAS  Google Scholar 

  • Ostroumov SA, Widdows J (2006) Inhibition of mussel suspension feeding by surfactants of three classes. Hydrobiologia 556:381–386

    CAS  Google Scholar 

  • Oya M, Hisano N (2010) Decreases in surface activities and aquatic toxicities of linear alkylbenzene sulfonate and alcohol ethoxylates during biodegradation. J Oleo Sci 59:31–39

    CAS  Google Scholar 

  • Oya M, Takemoto Y, Ishikawa Y (2008) Large decrease in acute aquatic toxicity of linear alkylbenzene sulfonate in hard water and seawater by adding adsorbent. J Oleo Sci 57:15–21

    CAS  Google Scholar 

  • Parr JF, Norman AG (1965) Considerations in the use of surfactants in plant systems: a review. Bot Gaz 126(2):86–96

    CAS  Google Scholar 

  • Part P, Svanberg O, Bergstrom E (1985) The influence of surfactants on gill physiology and cadmium uptake in perfused rainbow trout gills. Ecotoxicol Environ Safe 9:135–144

    CAS  Google Scholar 

  • Partearroyo MA, Ostolaza H, Goni FM, Barbera-Guillem E (1990) Surfactant-induced cell toxicity and cell lysis: a study using B16 melanoma cells. Biochem Pharmacol 40:1323–1328

    Google Scholar 

  • Patel RM, Desai AJ (1997) Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Lett Appl Microbiol 25:91–94

    CAS  Google Scholar 

  • Patel MK, Theiss A, Worrell E (1999) Surfactant production and use in Germany: resource requirements and CO2 emissions. Res Conserv Recycl 25:61–78

    Google Scholar 

  • Payne WJ (1963) Pure culture studies of the degradation of detergent compounds. Biotechnol Bioeng 5:355–365

    CAS  Google Scholar 

  • Payne WJ, Feisal VE (1963) Bacterial utilization of dodecyl sulfate and dodecyl benzene sulfonate. Appl Microbiol 11:339–344

    CAS  Google Scholar 

  • Perez T, Sarrazin L, Rebouillon P, Vacelet J (2002) First evidences of surfactant biodegradation by marine sponges (Porifera): an experimental study with a linear alkylbenzene sulfonate. Hydrobiologia 489:225–233

    CAS  Google Scholar 

  • Petrovic M, Fernandez-Alba AR, Borrull F, Marce RM, Mazo EG, Barcelo D (2002) Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environ Toxicol Chem 21:37–46

    CAS  Google Scholar 

  • Petta TB, De Medeiros SRB, Do Egito EST, Agnez-Lima LF (2004) Genotoxicity induced by saponified coconut oil surfactant in prokaryote systems. Mutagenesis 19:441–444

    CAS  Google Scholar 

  • Pittinger CA, Sellers JS, Janzen DC, Koch DG, Rothgeb TM, Hunnicutt ML (1993) Environmental life-cycle inventory of detergent-grade surfactant sourcing and production. J Am Oil Chem Soc 70:1–15

    CAS  Google Scholar 

  • Pletnev MY (2001) Chemistry of surfactants. In: Studies in interface science. Elsevier 13:1–97

    Google Scholar 

  • Poremba K, Gunkel W, Lang S, Wagner F (1991) Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Water Qual 6:157–163

    CAS  Google Scholar 

  • Prakasam VR, Joseph ML (2000) Water quality of Sasthamcotta Lake, Kerala (India) in relation to primary productivity and pollution from anthropogenic sources. J Environ Biol 21:305–307

    CAS  Google Scholar 

  • Prats D, Lopez C, Vallejo D, Varo P, Leon VM (2006) Effect of temperature on the biodegradation of linear alkylbenzene sulfonate and alcohol ethoxylate. J Surfactants Deterg 9:69–75

    CAS  Google Scholar 

  • Ramarathnam R, Bo S, Chen Y, Fernando WGD, Xuewen G, De Kievit T (2007) Molecular and biochemical detection of fengycin-and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911

    CAS  Google Scholar 

  • Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P, Thonart P (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 73:149–151. doi:10.1007/BF02523463

    CAS  Google Scholar 

  • Rebello S, Asok AK, Joseph SV, Joseph BV, Jose L, Mundayoor S (2013) Bioconversion of sodium dodecyl sulphate to Rhamnolipid by Pseudomonas aeruginosa: a novel and cost-effective production strategy. Appl Biochem Biotechnol 169(2):418–430. doi:10.1007/s12010-012-9988-x, Epub 2012 Dec 5

    CAS  Google Scholar 

  • Ribelles A, Carrasco MC, Rosety M, Aldana M (1995) A histochemical study of the biological effects of sodium dodecyl sulfate on the intestine of the gilthead seabream, Sparus aurata L. Ecotoxicol Environ Saf 32:131–138

    CAS  Google Scholar 

  • Rico-Rico A, Temara A, Behrends T, Hermens JLM (2009) Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments. Environ Pollut 157:377–383

    CAS  Google Scholar 

  • Rinallo C, Bennici A, Cenni E (1988) Effects of two surfactants on Triticum durum desf. plantlets. Environ Exp Bot 28:367–374

    CAS  Google Scholar 

  • Rivera-Utrilla J, Mendez-Diaz J, Sanchez-Polo M, Ferro-Garcia MA, Bautista-Toledo I (2006) Removal of the surfactant sodium dodecylbenzene sulfonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2. Water Res 40:1717–1725

    CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    CAS  Google Scholar 

  • Roig MG, Pedraz MA, Sanchez JM (1998) Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria: I. Pseudomonas C12B. J Mol Catal B Enzym 4:253–270

    CAS  Google Scholar 

  • Romanelli MF, Moraes MCF, Villavicencio ALCH, Borrely SI (2004) Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation. Radiat Phys Chem 71:411–413

    CAS  Google Scholar 

  • Rosen MJ (1989) Surfactants and interfacial phenomena, 3rd edn. Wiley, Hoboken, pp 2–5

    Google Scholar 

  • Rosen MJ, Li F, Morrall SW, Versteeg DJ (2001) The relationship between the interfacial properties of surfactants and their toxicity to aquatic organisms. Environ Sci Technol 35:954–959

    CAS  Google Scholar 

  • Rosety M, Ordonez FJ, Rosety-Rodriguez M, Rosety JM, Rosety I, Carrasco C, Ribelles A (2001) Acute toxicity of anionic surfactants sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS) on the fertilizing capability of gilthead (Sparus aurata L.) sperm. Histol Histopathol 16(3):839–843

    CAS  Google Scholar 

  • Rosety M, Ordonez FJ, Rosety-Rodriguez M, Rosety JM, Rosety I (2003) In vitro acute toxicity of anionic surfactant linear alkylbenzene sulfonate (LAS) on the motility of gilthead (Sparus aurata L.) sperm. Histol Histopathol 18:475–478

    CAS  Google Scholar 

  • Rosety-Rodríguez M, Ordonez FJ, Roldan S, Rosety JM, Rosety M, Ribelles A, Carrasco C, Rosety I (2002) Acute effects of sodium dodecyl sulfate on the survival and on morpho-histochemical characteristics of the trunk kidney of juvenile turbot Scophthalmus maximus L. Eur J Histochem 46:179–184

    Google Scholar 

  • Russell GL, Britton LN (2002) Use of certain alcohol ethoxylates to maintain protease stability in the presence of anionic surfactants. J Surfactants Deterg 5:5–10

    CAS  Google Scholar 

  • Salager JL (2002) Surfactants types and uses. Fire p booket-E300-attaching aid in surfactant science and engineering in English. Laboratory of FIRP, Universidad dos las andes, Merida Venezuela 2:3

    Google Scholar 

  • Salimon J, Salih N, Yousif E (2012) Industrial development and applications of plant oils and their biobased oleochemicals. Arab J Chem 5(2):135–145. doi:10.1016/j.arabjc.2010.08.007

    CAS  Google Scholar 

  • Sanchez-Peinado MM, Rodelas B, Martinez-Toledo MV, Gonzalez-Lopez J, Pozo C (2009) Response of soil enzymes to linear alkylbenzene sulfonate (LAS) addition in soil microcosms. Soil Biol Biochem 41:69–76

    CAS  Google Scholar 

  • Sanderson H, Dyer SD, Price BB, Nielsen AM, van Compernolle R, Selby M, Stanton K, Evans A, Ciarlo M, Sedlak R (2006) Occurrence and weight-of-evidence risk assessment of alkyl sulfates, alkyl ethoxysulfates, and linear alkylbenzene sulfonates (LAS) in river water and sediments. Sci Total Environ 368:695–712

    CAS  Google Scholar 

  • Saouter G, Van Hoof T, Feijtel M, Stalmans JC, Uhl LHM, Vollebergt, Westra J (1998) Life cycle inventory on laundry detergents: analysis of the LCI profiles of liquid and powder detergents. In: 38th WFK international detergency conference Frefeld, Seidenweberhaus, Krefeld

    Google Scholar 

  • Schleheck D, Cook AM (2005) ω-Oxygenation of the alkyl sidechain of linear alkylbenzenesulfonate (LAS) surfactant in Parvibaculum lavamentivorans T. Arch Microbiol 183:369–377

    CAS  Google Scholar 

  • Schleheck D, Dong W, Denger K, Heinzle E, Cook AM (2000) An α-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenyl carboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenyl-ethercarboxylates. Appl Environ Microbiol 66:1911–1916

    CAS  Google Scholar 

  • Schleheck D, Knepper TP, Fischer K, Cook AM (2004) Mineralization of individual congeners of linear alkylbenzene sulfonate by defined pairs of heterotrophic bacteria. Appl Environ Microbiol 70:4053–4063

    CAS  Google Scholar 

  • Schleheck D, Knepper TP, Eichhorn P, Cook AM (2007) Parvibaculum lavamentivorans DS-1T degrades centrally substituted congeners of commercial linear alkylbenzene sulfonate to sulfophenyl carboxylates and sulfophenyl dicarboxylates. Appl Environ Microbiol 73:4725–4732

    CAS  Google Scholar 

  • Schleheck D, von Netzer F, Fleischmann T, Rentsch D, Huhn T, Cook AM, Kohler H-PE (2010) The missing link in linear alkylbenzenesulfonate surfactant degradation: 4-sulfoacetophenone as a transient intermediate in the degradation of 3-(4-sulfophenyl) butyrate by Comamonas testosteroni KF-1. Appl Environ Microbiol 76:196–202

    CAS  Google Scholar 

  • Schramm L (2000) Surfactants: fundamentals and applications in the petroleum industry. Cambridge University Press, Cambridge, pp 1–615

    Google Scholar 

  • Schroeder D, Moeggenborg KJ, Chou H, Chamberlain JP, Hawkins JD, Carter P (2007) CMP method utilizing amphiphilic non-ionic surfactants. EP patent 1,560,890

    Google Scholar 

  • Schweigert MK, Mackenzie DP, Sarlo K (2000) Occupational asthma and allergy associated with the use of enzymes in the detergent industry a review of the epidemiology, toxicology and methods of prevention. Clin Exp Allergy 30:1511–1518

    CAS  Google Scholar 

  • Sebag H, Vanlerberghe G (1990) New polygylcerol ethers and their use in cosmetics and in pharmacy. US patent 4,946,670

    Google Scholar 

  • Sequeira CAC (1994) Environmental oriented electrochemistry, vol 59, Studies in environmental science. Elsevier, Amsterdam

    Google Scholar 

  • Setzkorn EA, Huddleston RL (1965) Ultraviolet spectroscopic analysis for following the biodegradation of hydrotropes. J Am Oil Chem Soc 42:1081–1084

    CAS  Google Scholar 

  • Shabtai Y (1990) Production of exopolysaccharides by Acinetobacter strains in a controlled fed-batch fermentation process using soap stock oil (SSO) as carbon source. Int J Biol Macromol 12:145–152

    CAS  Google Scholar 

  • Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4100. doi:10.1128/AAC.49.10.4093-4100.2005

    CAS  Google Scholar 

  • Shivji GM, Segal L, McKenzie RC, Sauder DN (1994) Cutaneous toxicity of surfactants in normal human keratinocytes assessed by cytotoxicity, arachidonic acid release, and regulation of interleukin-1α mRNA. Toxicol Mech Method 4:193–203

    CAS  Google Scholar 

  • Shu-de D (2009) Research progress on agricultural surfactants. J Anhui Agric Sci 37(7):2842–2843

    Google Scholar 

  • Shukor MY, Husin WSW, Rahman MFA, Shamaan NA, Syed MA (2009) Isolation and characterization of an SDS-degrading Klebsiella oxytoca. J Environ Biol 30:129–134

    CAS  Google Scholar 

  • Singh KL, Kumar A (1998) Short communication: Bacillus cereus capable of degrading SDS shows growth with a variety of detergents. World J Microbiol Biotechnol 14:777–779

    CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotech Adv 25:99–121

    CAS  Google Scholar 

  • Singh S, Patel P, Jaiswal S, Prabhune AA, Ramana CV, Prasad BLV (2009) A direct method for the preparation of glycolipid -metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J Chem 33:646–652

    CAS  Google Scholar 

  • Sirisattha S, Momose Y, Kitagawa E, Iwahashi H (2004) Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res 38:61–70

    CAS  Google Scholar 

  • Soberon-Chavez G, Campos J, Haidour A, Ramos JL, Ortigoza J (1996) Selection and preliminary characterization of a Pseudomonas aeruginosa strain mineralizing selected isomers in a branched chain dodecylbenzene sulfonate mixture. World J Microbiol Biotechnol 12:367–372

    CAS  Google Scholar 

  • Sonc A, Grilc V (2004) Batch foam fractionation of surfactants from aqueous solutions. Acta Chim Slov 51:687–698

    Google Scholar 

  • Stalmans M, Berenbold H, Berna JL, Cavalli L, Dillarstone A, Franke M, … Van Sloten R (1995) European life-cycle inventory for detergent surfactants production. Tenside, Surfactants Detergents 32(2):84–109

    Google Scholar 

  • Standard PG, Ahearn DG (1970) Effects of alkylbenzene sulfonates on yeasts. Appl Microbiol 20:646

    CAS  Google Scholar 

  • Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    Google Scholar 

  • Stow CA, Borsuk ME, Stanley DW (2001) Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina. Water Res 35:1489–1499

    CAS  Google Scholar 

  • Susmi TS, Rebello S, Jisha MS, Sherief PM (2010) Toxic effects of sodium dodecyl sulfate on grass carp Ctenopharyngodon idella. Fish Technol 47(2):157–162

    Google Scholar 

  • Swisher RD (1963) Biodegradation of ABS in relation to chemical structure. J (Water Pollut Contr Fed) 35:877–892

    CAS  Google Scholar 

  • Swisher RD (1967) Biodegradation of LAS benzene rings in activated sludge. J Am Oil Chem Soc 44:717–724

    CAS  Google Scholar 

  • Takada H, Ishiwatari R, Ogura N (1992) Distribution of linear alkylbenzenes (LABs) and linear alkylbenzene sulfonates (LAS) in Tokyo Bay sediments. Estuar Coast Shelf Sci 35:141–156

    CAS  Google Scholar 

  • Tharapiwattananon N, Scamehorn JF, Osuwan S, Harwell JH, Haller KJ (1996) Surfactant recovery from water using foam fractionation. Sep Sci Technol 31:1233–1258

    CAS  Google Scholar 

  • Thomas OR, White GF (1989) Metabolic pathway for the biodegradation of sodium dodecyl sulfate by Pseudomonas sp. C12B. Biotechnol Appl Biochem 11:318–327

    CAS  Google Scholar 

  • Thurnheer T, Zurrer D, Hoglinger O, Leisinger T, Cook AM (1990) Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acids, and orthanilic acid in Alcaligenes sp. strain O-1. Biodegradation 1:55–64

    CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    CAS  Google Scholar 

  • Tolls J, Kloepper-Sams P, Sijm DTHM (1994) Surfactant bioconcentration-a critical review. Chemosphere 29:693–717

    CAS  Google Scholar 

  • Torres LG, Orantes JL, Iturbe R (2003) Critical micellar concentrations for three surfactants and their diesel-removal efficiencies in petroleum-contaminated soils. Environ Geosci 10:28–36

    Google Scholar 

  • Tozum-Calgan SRD, Atay- Guneyman NZ (1994) The effects of an anionic and a non-ionic surfactant on growth and nitrogen fixing ability of a cyanobacterium, Gloeocapsa. J Environ Sci Health A Environ Sci Eng 29:355–369

    Google Scholar 

  • Trehy ML, Gledhill WE, Mieure JP, Adamove JE, Nielsen AM, Perkins HO, Eckhoff WS (1996) Environmental monitoring for linear alkylbenzene sulfonates, dialkyltetralin sulfonates and their biodegradation intermediates. Environ Toxicol Chem 15(3):233–240

    CAS  Google Scholar 

  • Tyman JHP (1979) Non-isoprenoid long chain phenols. Chem Soc Rev 8:499–537

    CAS  Google Scholar 

  • USEPA (2008) Zonix. www.epa.gov/pesticides/biopesticides/ingredients/product/prod_110029.htm

  • Usman K, Adesina AA, Lucien FP, Waite TD (2001) Kinetics of the autoxidation of sodium dodecyl sulfate catalyzed by alumina-supported Co-Zn composite. Ind Eng Chem Res 40:5095–5101

    CAS  Google Scholar 

  • Vakil H, Sethi S, Fu S, Stanek A, Wallner S, Gross R (2010) Sophorolipids decrease pulmonary inflammation in a mouse asthma model. Mod Pathol 23:392A

    Google Scholar 

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Google Scholar 

  • Van de Plassche EJ, de Bruijn JHM, Stephenson RR, Marshall SJ, Feijtel TCJ, Belanger SE (1999) Predicted no effect concentrations and risk characterization of four surfactants: linear alkyl benzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap. Environ Toxicol Chem 18:2653–2663

    Google Scholar 

  • Van Hylckama Vlieg JET, Janssen DB (2001) Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotechnol 85:81–102

    Google Scholar 

  • Vaz DA, Gudina EJ, Alameda EJ, Teixeira JA, Rodrigues LR (2012) Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids Surf B 89:167–174

    CAS  Google Scholar 

  • Velikonja J, Kosaric N (1993) Biosurfactants in food applications. In Biosurfactants — production, properties and applications, ed Kosaric, N. pp. 419–446. New York: Marcel Dekker.

    Google Scholar 

  • Venhuis SH, Mehrvar M (2004) Health effects, environmental impacts, and photochemical degradation of selected surfactants in water. Int J Photoenergy 6:115–125

    CAS  Google Scholar 

  • Verge C, Moreno A, Bravo J, Berna JL (2001) Influence of water hardness on the bioavailability and toxicity of linear alkylbenzene sulfonate (LAS). Chemosphere 44:1749–1757

    CAS  Google Scholar 

  • Vian L, Vincent J, Maurin J, Fabre I, Giroux J, Cano JP (1995) Comparison of three in vitro cytotoxicity assays for estimating surfactant ocular irritation. Toxicol In Vitro 9:185–190

    CAS  Google Scholar 

  • Vigon BW, Rubin AJ (1989) Practical considerations in the surfactant-aided mobilization of contaminants in aquifers. J (Water Pollut Contr Fed) 61(7):1233–1240

    CAS  Google Scholar 

  • Vinther FP, Mortensen GK, Elsgaard L (2003) Effects of linear alkylbenzene sulfonates on functional diversity of microbial communities in soil. Environ Toxicol Chem 22:35–39

    CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    CAS  Google Scholar 

  • Vreysen S, Maes A (2005) Remediation of a diesel contaminated, sandy-loam soil using low concentrated surfactant solutions. J Soil Sediments 5:240–244

    CAS  Google Scholar 

  • Warson H, Finch CA (1998) Surfactants and polymers in aqueous solution 1edn Wiley Publishers.

    Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241

    CAS  Google Scholar 

  • Wei G, Li Y, Du G, Chen J (2003) Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem 38:1133–1138

    CAS  Google Scholar 

  • Weuthen M, Kawa R, Hill K, Ansmann A (1995) Long chain alkyl polyglycosides– a new generation of emulsifiers. Lipid/Fett 97:209–211

    CAS  Google Scholar 

  • Wilhelm KP, Cua AB, Wolff HH, Maibach HI (1993) Surfactant-induced stratum corneum hydration in vivo: prediction of the irritation potential of anionic surfactants. J Invest Dermatol 101:310–315

    CAS  Google Scholar 

  • Wilhelm KP, Freitag G, Wolff HH (1994) Surfactant-induced skin irritation and skin repair: evaluation of the acute human irritation model by noninvasive techniques. J Am Acad Dermatol 30:944–949

    CAS  Google Scholar 

  • Williams J, Payne WJ (1964) Enzymes induced in a bacterium by growth on sodium dodecyl sulfate. Appl Microbiol 12:360–362

    CAS  Google Scholar 

  • Wolfenbarger DANA, Lukefahr MJ, Lowry WL (1967) Toxicity of surfactants and surfactant- insecticide combinations to the bollworm, 1 tobacco budworm, 1 and pink boIIworm 2, 3, 4. J Econ Entomol 60:902–904

    Google Scholar 

  • Woltering DM (1984) The growth response in fish chronic and early life stage toxicity tests: a critical review. Aquat Toxicol 5:1–21

    CAS  Google Scholar 

  • Xiaoli Y, Xuegang L, Changbin S, Shihong C, Qiang W (2000) The effects of surfactants on the activity of invertase and superoxide dismutase of soybean leaf in vitro and in vivo. Colloids Surf A 175:249–255

    CAS  Google Scholar 

  • Xie Y, Ye R, Liu H (2007) Microstructure studies on biosurfactant-rhamnolipid/n-butanol/water/n-heptane microemulsion system. Colloids Surf A 292:189–195

    CAS  Google Scholar 

  • Xu KP, Li XF, Fu-Shin XY (2000) Corneal organ culture model for assessing epithelial responses to surfactants. Toxicol Sci 58:306–314

    CAS  Google Scholar 

  • Yadav JS, Lawrence DL, Nuck BA, Federle TW, Reddy CA (2001) Biotransformation of linear alkylbenzene sulfonate (LAS) by Phanerochaete chrysosporium: oxidation of alkyl side-chain. Biodegradation 12:443–453

    CAS  Google Scholar 

  • Yamaguchi JY, Kanada A, Horimoto K, Oyama TM, Chikutei K, Nishimura Y, Yamamoto H, Ishida S, Okano Y, Oyama Y (2006) Modification of vulnerability to dodecylbenzenesulfonate, an anionic surfactant, by calcium in rat thymocytes. Environ Toxicol Pharmacol 22:234–239. doi:10.1016/j.etap. 2006. 03.011

    CAS  Google Scholar 

  • Yeldho D, Rebello S, Jisha MS (2011) Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulfate, by Pseudomonas aeruginosa S7. Bull Environ Contam Toxicol 86:110–113

    CAS  Google Scholar 

  • Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431

    CAS  Google Scholar 

  • York JD, Firoozabadi A (2008) Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration. J Phys Chem B 112(3):845–851. doi:10.1021/jp077271h

    CAS  Google Scholar 

  • Yuan S, Tian M, Lu X (2006) Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and β-cyclodextrin. J Hazard Mater 137:1218–1225

    CAS  Google Scholar 

  • Yuksel E, Sengil IA, Ozacar M (2009) The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chem Eng J 152:347–353

    CAS  Google Scholar 

  • Zajic JE, Guignard H, Gerson DF (1977) Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol Bioeng 19:1303–1320

    CAS  Google Scholar 

  • Zhang W, Lo IMC (2006) EDTA-enhanced washing for remediation of Pb-and/or Zn-contaminated soils. J Environ Eng 132:1282

    CAS  Google Scholar 

  • Zhong JF (1999) Application of surfactants in pharmacy. Peoples Medical Press, Beijing, pp 120–124

    Google Scholar 

  • Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Jisha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rebello, S., Asok, A.K., Mundayoor, S., Jisha, M.S. (2013). Surfactants: Chemistry, Toxicity and Remediation. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutant Diseases, Remediation and Recycling. Environmental Chemistry for a Sustainable World, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-02387-8_5

Download citation

Publish with us

Policies and ethics