Skip to main content

Propagation of Light and Modes in Optical Fibers

  • Chapter
  • First Online:
  • 3242 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 181))

Abstract

Distance transfer of electromagnetic energy (i.e., energy transfer between remote points in space) in the spectral range of optical frequencies (light) can be done by propagation of an electromagnetic field in a dielectric waveguide. The main properties of this light propagation in an optical waveguide are determined by total internal reflection (TIR).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Tünnermann, J. Limpert, A. Bruns, Diode-pumped fiber lasers, Chap. 4.3 in Laser Systems, Part 2, Landolt-Börnstein—Group VIII Advanced Materials and Technologies, vol. 12 (Springer, New York, 2008), pp 125–139

    Google Scholar 

  2. L.B. Jeunhomme, Single mode fiber optics: principles and applications (CRC Press, 1990), p. 339

    Google Scholar 

  3. D. Gloge, Weakly guiding fibers. Appl. Opt. 10(10), 2252–2258 (1971)

    Google Scholar 

  4. R.B. Dyott, J.R. Stern, Group delay in fiber waveguides. Electron. Lett. l7, 82–84 (1971)

    Google Scholar 

  5. M. DiDomenico Jr, Material dispersion in optical fiber waveguides. Appl. Opt. 11(3), 652–654 (1972)

    Article  Google Scholar 

  6. K. Okamoto, T. Edahiro, N. Shibota, Polarization properties of single-polarization fibers. Opt. Lett. 7(11), 569–571 (1982)

    Google Scholar 

  7. A.E. Siegman, New developments in laser resonators. Proc. SPIE 1224, 2 (1990)

    Article  Google Scholar 

  8. A.E. Siegman, Defining, measuring, and optimizing laser beam quality. Proc. SPIE 1868, 2 (1993)

    Article  Google Scholar 

  9. A.E. Siegman, How to (Maybe) measure laser beam quality, in DPSS Lasers: Applications and Issues (OSA TOPS vol. 17) ed. by M.W. Dowley, OSA, Washington D.C. (1998), pp. 184–199

    Google Scholar 

  10. Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios. ISO Standard 11146 (2005)

    Google Scholar 

  11. T.S. Ross, W.P. Latham, Appropriate measures and consistent standard for high energy laser beam quality. J. Directed Energy 2(1), 22–58 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii (Vartan) Ter-Mikirtychev .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ter-Mikirtychev, V.(. (2014). Propagation of Light and Modes in Optical Fibers. In: Fundamentals of Fiber Lasers and Fiber Amplifiers. Springer Series in Optical Sciences, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-319-02338-0_6

Download citation

Publish with us

Policies and ethics