Skip to main content

Nano Bulk Thermoelectrics: Concepts, Techniques, and Modeling

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

Abstract

The beneficial effects of nanostructured material systems have provided a significant momentum to accomplish high-efficiency thermoelectric materials for power generation and cooling applications. The quantum size effects have been widely explored in order to shrink the contribution of lattice thermal conductivity of the thermoelectric systems, thereby enhancing the overall figure-of-merit. Modifying the nanoscale level structural features and the creation of additional phonon scattering sites in the form of grain boundary interfaces became the basis for fabrication of nanostructured materials. The requirement of specific physical features in nanostructured thermoelectrics also brought a variety of changes to the fabrication processes. In this chapter, we review some of the prominent techniques for fabrication of such nanostructured material systems. An overview of the concepts and techniques for theoretical modeling of the charge carrier and phonon transport mechanisms in the interfacial regions is presented. Further, the constructive effects of nanostructuring in thermoelectric materials are discussed based on a theoretical approach via Boltzmann transport equation under the relaxation time approximation. The calculations are used to demonstrate the advantages and disadvantages of nanoscale effects in the well-known material systems of Si x Ge1−x and Mg2Si.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seebeck, T.J.: Magnetische Polarisation der Metalle und Erze Durch Temperatur-Differenz. Ostwald’s Klassiker der Exakten Wissenshaften Nr. 70, 1822–1823 (1895)

    Google Scholar 

  2. Peltier, J.: Nouvelles Experiences sur la Caloriecete des Courans Electrique. Ann. Chim. LVI, 371–387 (1834)

    Google Scholar 

  3. Thomson, W.: On the dynamical theory of heat. Trans. R. Soc. Edinb. 3, 91–98 (1851)

    Google Scholar 

  4. Haken, W.: Beitrag zur Kenntnis der thermoelektrischen Eigenschaften der Metallegierungen. Ann. Phys. 333(7), p291–p336 (1910)

    Google Scholar 

  5. Ioffe, A.: Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch, London (1957)

    Google Scholar 

  6. Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G.: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)

    Google Scholar 

  7. Sootsman, J.R., Chung, D.Y., Kanatzidis, M.G.: New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2009)

    Google Scholar 

  8. Ioffe, A.: The revival of thermoelectricity. Sci. Am. 199, 31–37 (1958)

    Google Scholar 

  9. Walker, C.T., Pohl, R.O.: Phonon scattering by point defects. Phys. Rev. 131, 1433–1442 (1963)

    Google Scholar 

  10. Slack, G.A.: New materials and performance limits for thermoelectric cooling. In: Rowe, D.M. (ed.) CRC Handbook of Thermoelectrics, p. 407. CRC, Boca Raton, FL (1995)

    Google Scholar 

  11. Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93, 7436–7439 (1996)

    Google Scholar 

  12. Mahan, G.D.: Good Thermoelectrics, Solid State Physics, vol. 51, pp. 82–157. Academic, New York (1997)

    Google Scholar 

  13. Xie, W., Tang, X., Yan, Y., Zhang, Q., Tritt, T.M.: Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 94, 102111 (2009). doi:10.1063/1.3097026

    Google Scholar 

  14. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Yan, X., Wang, D., Vashaee, D., Dresselhaus, M., Chen, G., Ren, Z.F.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    Google Scholar 

  15. Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)

    Google Scholar 

  16. Vashaee, D., Shakouri, A.: Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 92(10), 106103 (2004)

    Google Scholar 

  17. Shakouri, A., et al.: Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As∕In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335 (2006)

    Google Scholar 

  18. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008). doi:10.1038/nmat2090

    Google Scholar 

  19. Pichanusakorn, P., Bandaru, P.: Nanostructured thermoelectrics. Mater. Sci. Eng. R 67, 19–63 (2010)

    Google Scholar 

  20. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.-P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007). doi:10.1002/adma.200600527

    Google Scholar 

  21. Satyala, N., Vashaee, D.: The effect of crystallite size on thermoelectric properties of bulk nanostructured magnesium silicide (Mg2Si) compounds. Appl. Phys. Lett. 100, 073107 (2012)

    Google Scholar 

  22. Satyala, N., Vashaee, D.: Detrimental influence of nanostructuring on the thermoelectric properties of magnesium silicide. J. Appl. Phys. 112(9), 093716–093716-11 (2012)

    Google Scholar 

  23. Pshenai-Severin, D.A., Federov, M.I., Samunin, A.Y.: The influence of grain boundary scattering on thermoelectric properties of Mg2Si and Mg2Si0.8Sn0.2. J. Electron. Mater. (2013). doi:10.007/s11664-012-2403-0

    Google Scholar 

  24. Heremans, J.P., Thrush, C.M., Morelli, D.T.: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004)

    Google Scholar 

  25. Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenpakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 32, 554 (2008)

    Google Scholar 

  26. Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices. Science 297(5590), 2229 (2002)

    Google Scholar 

  27. Venkatasubramanian, R., Silvona, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001)

    Google Scholar 

  28. Nolas, G.S., Slack, G.A., Modeli, D.T., Tritt, T.M., Ehrlich, A.C.: The effect of rare‐earth filling on the lattice thermal conductivity of skutterudites. J. Appl. Phys. 79, 4002 (1996)

    Google Scholar 

  29. Fluerial, J.P., Caillat, T., Borshchevsky, A.: Skutterudites: a new class of promising thermoelectric materials. In: Proceedings of the 13th International Conference on Thermoelectrics, p. 40, Kansas City, Missouri (1994)

    Google Scholar 

  30. Sales, B.C., Mandrus, D., Williams, R.K.: Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325 (1996)

    Google Scholar 

  31. Brown, S.R., Kauzlarich, S.M., Gascoin, F., Snyder, G.J.: Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006)

    Google Scholar 

  32. Toberer, E.S., Christensen, M., Iversen, B.B., Snyder, G.J.: High temperature thermoelectric efficiency in Ba8Ga16Ge30. Phys. Rev. B 77, 075203 (2008)

    Google Scholar 

  33. Caillat, T., Fleurial, J.P., Borshchevsky, A.: Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids 58, 1119–1125 (1997)

    Google Scholar 

  34. Kurosaki, K., Kosuga, A., Muta, H., Uno, M., Yamanaka, S.: Ag9TITe5: a high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005)

    Google Scholar 

  35. Pei, Y., Wang, H., Snyder, G.J.: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012). doi:10.1002/adma.201202919

    Google Scholar 

  36. Chen, G.: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958 (1998)

    Google Scholar 

  37. Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993)

    Google Scholar 

  38. Vashaee, D., Zhang, Y., Shakouri, A., Zeng, G., Chiu, Y.: Cross-plane Seebeck coefficient in superlattice structures in the miniband conduction regime. Phys. Rev. B 74, 195315 (2006)

    Google Scholar 

  39. Vashaee, D., Shakouri, A.: Electronic and thermoelectric transport in semiconductor and metallic Superlattices. J. Appl. Phys. 95(3), 1233–1245 (2004)

    Google Scholar 

  40. Zide, J.T.M., Klenov, D.O., Stemmer, S., Gossard, A., Zeng, G.H., Bowers, J.E., Vashaee, D., Shakouri, A.: Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87, 112102 (2005)

    Google Scholar 

  41. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Yan, X., Wang, D., Vashaee, D., Dresselhaus, M., Chen, G., Ren, Z.F.: High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science Express Research Articles (2008). doi:10.1126/science.1156446

    Google Scholar 

  42. Zamanipour, Z., Shi, X., Dehkordi, A.M., Krasinski, J.S., Vashaee, D.: The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Physica Status Solidi (a) 209(10), 2049–2058 (2012)

    Google Scholar 

  43. Minnich, A.J., Lee, H., Wang, X.W., Joshi, G., Dresselhaus, M.S., Ren, Z.F., Chen, G., Vashaee, D.: Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 80, 155327 (2009)

    Google Scholar 

  44. Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Google Scholar 

  45. Thermion Company: Implemented conventional bulk technologies to fabricate thermoelectric devices of ~200μm thick. http://www.thermion-company.com (2005)

  46. Gould, C., Shammas, N.: A review of thermoelectric MEMS devices for micro-power generation, heating and cooling applications. In: Takahata, K. (ed.) Micro Electronic and Mechanical Systems. Available from: http://www.intechopen.com/books/micro-electronicand-mechanical-systems/a-review-of-thermoelectric-mems-devices-for-micro-power-generation-heating-andcooling-applications

  47. Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., Ren, Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8(12), 4670 (2008)

    Google Scholar 

  48. Bathula, S., Jayasimhadri, M., Singh, N., Srivastava, A.K., Pulikkotil, J., Dhar, A., Budhani, R.C.: Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys. Appl. Phys. Lett. 101, 213902 (2012)

    Google Scholar 

  49. Mingo, N., Hauser, D., Kobayashi, N.P., Plissonnier, M., Shakouri, A.: Nanoparticle-in-alloy approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9(2), 711–715 (2009)

    Google Scholar 

  50. Rowe, D.M. (ed.): CRC Handbook of Thermoelectrics. CRC, Boca Raton, FL (1995)

    Google Scholar 

  51. Zhu, Y.T., Langdon, T.G.: The fundamentals of nanostructured materials processed by severe plastic deformation. J. Miner. 56(10), 58–63 (2004)

    Google Scholar 

  52. Segal, V.M.: Engineering and commercialization of equal channel angular extrusion (ECAE). Mater. Sci. Eng. A386, 269 (2004)

    Google Scholar 

  53. Saravanan, M., Pillai, R.M., Pai, B.C.: Equal channel angular pressing of aluminum alloys and composites—an overview. Aluminum India 5(2), 3–14 (2005)

    Google Scholar 

  54. Slarnova, K.: Accumulative roll-bonding: first experience with a twin-roll cast AA8006 alloy. J. Alloys Compd. 378(1–2), 322–325 (2004)

    Google Scholar 

  55. Tsuji, N., Saito, Y., Lee, S.-H., Minamino, Y.: ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5(5), 338 (2003)

    Google Scholar 

  56. Androulakis, J., Lin, C.H., Kong, H.J., Uher, C., Wu, C.I., Hogan, T., Cook, B.A., Caillat, T., Paraskevopoulos, K.M., Kanatzidis, M.G.: Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1-xSnxTe–PbS. J. Am. Chem. Soc. 129, 9780 (2007)

    Google Scholar 

  57. Sootsman, J.R., Pcionek, R.J., Kong, H., Uher, C., Kanatzidis, M.G.: Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation. Chem. Mater. 18, 4993 (2006)

    Google Scholar 

  58. Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., Kanatzidis, M.G.: Cubic AgPb m SbTe2+m : bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004)

    Google Scholar 

  59. Poudeu, P.F.P., D’Angelo, J., Downey, A.D., Short, J.L., Hogan, T.P., Kanatzidis, M.G.: High thermoelectric figure of merit and nanostructuring in bulk p-type Na1−x Pb m Sb y Te m+2. Angew. Chem. Int. Ed. 45, 3835 (2006)

    Google Scholar 

  60. Blum, I.D., Isheim, D., Seidman, D.N., He, J., Androulakis, J., Biswas, K., Dravid, V.P., Kanatzidis, M.G.: Dopant distributions in PbTe-based thermoelectric materials. J. Electron. Mater. 41(6), 1583–1588 (2012)

    Google Scholar 

  61. Chen, S., Carroll, D.L.: Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2, 1003 (2002)

    Google Scholar 

  62. Maillard, M., Giorgio, S., Pileni, M.P.: Silver nanodisks. Adv. Mater. 14, 1084 (2002)

    Google Scholar 

  63. Hao, E., Kelly, K.L., Hupp, J.T., Schatz, G.C.: Synthesis of silver nanodiscs using polystyrene meso-spheres as templates. J. Am. Chem. Soc. 124, 15182 (2002)

    Google Scholar 

  64. Ibano, D., Yokota, Y., Tominaga, T.: Preparation of gold nanoplates protected by an anionic phospholipid. Chem. Lett. 32, 574 (2003)

    Google Scholar 

  65. Simakin, A.V., Voronov, V.V., Shafeev, G.A., Brayner, R., Bozon-Verduraz, F.: Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem. Phys. Lett. 348, 182 (2001)

    Google Scholar 

  66. Lu, W., Ding, Y., Chen, Y., Wang, Z.L., Fang, J.: Formation of PbSe nanocrystals: a growth toward nanocubes. J. Am. Chem. Soc. 127, 10112 (2005)

    Google Scholar 

  67. Wang, W., Poudel, B., Yang, J., Wang, D.Z., Ren, Z.F.: High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. J. Am. Chem. Soc. 127, 13792 (2005)

    Google Scholar 

  68. Bertini, L., Stiewe, C., Toprak, M., Williams, S., Platzek, D., Mrotzek, A., Zhang, Y., Gatti, C., Muller, E., Muhammed, M., Rowe, M.: Nanostructured Co1−xNixSb3 skutterudites: synthesis, thermoelectric properties, and theoretical modeling. J. Appl. Phys. 93, 438 (2003)

    Google Scholar 

  69. Liu, C.J., Yamauchi, H.: Thermoelectric power and resistivity of La1.8Sr0.2CaCu2O6 and the effects of O2 hot-isostatic-press annealing. Phys. Rev. B 51, 11826 (1995)

    Google Scholar 

  70. Wang, X.W., Lee, H., Lan, Y.C., Zhu, G.H., Joshi, G., Wang, D.Z., Yang, J., Muto, A.J., Tang, M.Y., Klatsky, J., Song, S., Dresselhaus, M.S., Chen, G., Ren, Z.: Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008)

    Google Scholar 

  71. Kishimoto, K., Koyanagi, T.: Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering. J. Appl. Phys. 92(9), 2544 (2002)

    Google Scholar 

  72. Wang, H., Li, J.F., Nan, C.W., Zhou, M., Liu, W., Zhang, B.P., Kita, T.: High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl. Phys. Lett. 88, 092104 (2006)

    Google Scholar 

  73. Li, H., Tang, X.F., Su, X.L., Zhang, Q.J.: Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 92, 202114 (2008)

    Google Scholar 

  74. Chen, G.: Recent trends in thermoelectric materials research III. In: Willardson, R.K., Weber, E.R. (eds.) Semiconductors and Semimetals, vol. 71, pp. 203–259. Academic, New York (2001)

    Google Scholar 

  75. Liu, H., Zheng, Z., Yang, D., Ke, X., Jaatinen, E., Zhao, J.C., Zhu, H.Y.: Coherent interfaces between crystals in nanocrystal composites. ACS Nano 4(10), 6219–6227 (2010)

    Google Scholar 

  76. Huang, X., Wang, X., Cook, B.: Coherent nanointerfaces in thermoelectric materials. J. Phys. Chem. C 114(49), 21003–21012 (2010)

    Google Scholar 

  77. Bartkowiak, M., Mahan, G.D.: Heat and electricity transport through interfaces. In: Tritt, T.M. (ed.) Recent Trends in Thermoelectric Materials, vol. 2. Semiconductors and Semimetals, vol. 70, pp. 245–271. Academic, New York (2001)

    Google Scholar 

  78. Swartz, E.T., Pohl, R.O.: Thermal boundary resistance. Rev. Mod. Phys. 61(3), 605–658 (1989)

    Google Scholar 

  79. Singh, J.: Physics of Semiconductors and Their Heterostructures. McGraw-Hill, Singapore (1996)

    Google Scholar 

  80. Lundstrom, M.: Fundamentals of Carrier Transport, 2nd edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  81. Heremans, J.P., Thrush, C.M., Morelli, D.T.: Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys. 98, 063703 (2005)

    Google Scholar 

  82. Ramu, A.T., Cassels, L.E., Hackman, N.H., Lu, H., Zide, J.M.O., Bowers, J.E.: Thermoelectric transport in the coupled valence-band model. J. Appl. Phys. 109, 033704 (2011)

    Google Scholar 

  83. Jacob, U., Vancea, J., Hoffmann, H.: Surface-roughness contributions to the electrical resistivity of polycrystalline metal films. Phys. Rev. B 41, 11852–11857 (1990)

    Google Scholar 

  84. Taylor, W.E., Odell, N.H., Fan, H.Y.: Grain boundary barriers in germanium. Phys. Rev. 93, 666–667 (1954)

    Google Scholar 

  85. Tanaka, T., Hayashi, S., Shibayama, K.: Thermal-depolarization-current study of composites of epoxy resin containing mica flakes. J. Appl. Phys. 48, 3478–3483 (1977)

    Google Scholar 

  86. Shuai, Z., Wang, L., Song, C.: Theory of Charge Transport in Carbon Electronic Materials. SpringerBriefs in Molecular Science. Springer, Berlin (2012). doi:10.1007/978-3-642-25076-7_4

    Google Scholar 

  87. Bardeen, J., Shockley, W.: Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80(1), 72–80 (1950)

    MATH  MathSciNet  Google Scholar 

  88. Ward, A., Broido, D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)

    Google Scholar 

  89. Tritt, T.M. (ed.): Thermal Conductivity: Theory, Properties, and Applications. Springer, New York (2005)

    Google Scholar 

  90. Toberer, E.S., Zevalkink, A., Snyder, G.J.: Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843 (2011)

    Google Scholar 

  91. Pettersson, S.: Calculation of the thermal conductivity of alkali halide crystals. J. Phys. C Solid State Phys. 20(8), 1047–1061 (1987)

    Google Scholar 

  92. Slack, G.A.: Solid State Physics, vol. 34. Academic, New York (1979)

    Google Scholar 

  93. Roufosse, M., Klemens, P.G.: Thermal-conductivity of complex dielectric crystals. Phys. Rev. B 7(12), 5379–5386 (1973)

    Google Scholar 

  94. Pohl, R.O.: Thermal conductivity and phonon resonance scattering. Phys. Rev. Lett. 8(12), 481–483 (1962)

    Google Scholar 

  95. Wagner, M.: Influence of localized modes on thermal conductivity. Phys. Rev. 131(4), 1443–1455 (1963)

    MATH  Google Scholar 

  96. Morelli, D.T., Jovovic, V., Heremans, J.P.: Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101(3), 035901 (2008)

    Google Scholar 

  97. Hopkins, P.E., Duda, J.C., Norris, P.M.: Anharmonic phonon interaction at interfaces and contributions to thermal boundary conductance. J. Heat Transfer 133(6), 062401 (2011)

    Google Scholar 

  98. Rath, S., Sanyal, S.P.: Effect of strain on vibrational modes in strained layer superlattices. Pramana 41(1), 21–29 (1993)

    Google Scholar 

  99. Herring, C., Vogt, E.: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101(3), 944–961 (1956)

    MATH  Google Scholar 

  100. Bir, G., Pikus, G.: Symmetry and Strain-Induced Effects in Semiconductors. Wiley, New York (1974)

    Google Scholar 

  101. Henry, A.S., Chen, G.: Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5(2), 141–152(12) (2008)

    Google Scholar 

  102. Chou, F.C., Lukes, J.R., Liang, X.G., Takahashi, K., Tien, C.L.: Molecular dynamics in microscale thermophysical engineering. Annu. Rev. Heat Transfer 10, 141–176 (1999)

    Google Scholar 

  103. Chen, G., Tasciuc, B., Yang, R.: Nanoscale heat transfer. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, vol. 7, p. 429. American Scientific Publishers, Stevenson Ranch, CA (2004)

    Google Scholar 

  104. Maiti, A., Mahan, G.D., Pantelides, S.T.: Dynamical simulations of non-equilibrium processes—heat flow and the Kapitza resistance across grain boundaries. Solid State Commun. 102(7), 517 (1997)

    Google Scholar 

  105. Stevens, R.J., Zhigilei, L.V., Norris, P.M.: Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: nonequilibrium molecular dynamics simulations. Int. J. Heat Mass Transfer 50(19–20), 3977 (2007)

    MATH  Google Scholar 

  106. Zhong, H.L., Lukes, J.R.: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74, 125403 (2006)

    Google Scholar 

  107. Kaddouri, H., Benet, S., Charar, S., Makowaska-Janusik, M., Tedenac, J.C., Kityk, I.V.: Simulation of thermoelectric properties of bismuth telluride single crystalline films grown on Si and SiO2 surfaces. Phys. Rev. B 62(24), 17108 (2000)

    Google Scholar 

  108. Chonan, T., Katayama, S.: Molecular-dynamics simulation of lattice thermal conductivity in Pb1-x Sn x Te and Pb1-x Ge x Te at high temperature. J. Phys. Soc. Jpn. 75(6), 064601 (2006)

    Google Scholar 

  109. Huang, X., Huai, X., Liang, S., Wang, X.: Thermal transport in Si/Ge nanocomposites. J. Phys. D. Appl. Phys. 42, 095416 (2009)

    Google Scholar 

  110. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  111. Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68(16), 2512–2515 (1992)

    Google Scholar 

  112. Bulusu, A., Walker, D.G.: Modeling of thermoelectric properties of semi-conductor thin films with quantum and scattering effects. J. Heat Transfer 129(4), 492–499 (2006)

    Google Scholar 

  113. Savic, I., Stewart, D.A., Mingo, N.: Thermal conduction mechanisms in boron-nitride nanotubes: few-shell versus all-shell conduction. Phys. Rev. B 78, 235434 (2008)

    Google Scholar 

  114. Savic, I., Mingo, N., Stewart, D.A.: Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable? Phys. Rev. Lett. 101, 165502 (2008)

    Google Scholar 

  115. Stewart, D.A., Savic, I., Mingo, N.: First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity. Nano Lett. 9(1), 81–84 (2009)

    Google Scholar 

  116. Kim, W., Wang, R., Majumdar, A.: Nanostructuring expands thermal limits. Nano Today 2(1), 40–47 (2007)

    Google Scholar 

  117. Tani, J.I., Kido, H.: Thermoelectric properties of Al-doped Mg2Si1−x Sn x (x ≦ 0.1). J. Alloys Compd. 466, 335–340 (2008)

    Google Scholar 

  118. Choi, S.M., Kim, K.H., Kim, I.H., Kim, S.U., Seo, W.S.: Thermoelectric properties of the Bi-doped Mg2Si system. Curr. Appl. Phys. 11(3 Suppl), S388–S391 (2011)

    Google Scholar 

  119. Akasaka, M., Iida, T., Matsumoto, A., Yamanaka, K., Takanash, Y., Imai, T., Hamada, N.: The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method. J. Appl. Phys. 104, 013703 (2008)

    Google Scholar 

  120. Satyala, N., Vashaee, D.: Modeling of thermoelectric properties of magnesium silicide (Mg2 Si). J. Electron. Mater. 41(6), 1785–1791 (2012)

    Google Scholar 

  121. Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y., Vedernikov, M.V.: Highly effective Mg2Si1−x Sn x thermoelectrics. Phys. Rev. B 74, 045207 (2006)

    Google Scholar 

  122. Mars, K., Ihou-mouko, H., Pont, G., Tobola, J., Scherrer, H.: Thermoelectric properties and electronic structure of Bi- and Ag-doped Mg2Si1−x Ge x compounds. J. Electron. Mater. 38(7), 1360 (2009)

    Google Scholar 

  123. Kim, I.-H., Jung, J.-Y., Choi, S.-M., Seo, W.-S., Kim, S.-U.: Synthesis of thermoelectric Mg2Si by mechanical alloying. J. Korean Phys. Soc. 57(4), 1005–1009 (2010)

    Google Scholar 

  124. Tani, J.-I., Kido, H.: Thermoelectric properties of Sb-doped Mg2Si semiconductors. Intermetallics 15, 1202–1207 (2007)

    Google Scholar 

  125. Sakamoto, T., Iida, T., Kurosaki, S., Yano, K., Taguchi, H., Nishio, K., Takanashi, Y.: Thermoelectric behavior of Sb- and Al-doped n-type Mg2Si device under large temperature differences. J. Electron. Mater. 40(5), 629–634 (2010)

    Google Scholar 

  126. Savary, E., Gascoin, F., Marinel, S.: Fast synthesis of nanocrystalline Mg2Si by microwave heating: a new route to nano-structured thermoelectric materials. Dalton Trans. 39, 11074–11080 (2010)

    Google Scholar 

  127. Dube, D.C., Fu, M., Agrawal, D., Roy, R., Santra, A.: Rapid alloying of silicon with germanium in microwave field using single mode cavity. Mater. Res. Innov. 12(3), 119 (2008)

    Google Scholar 

  128. Nikitin, E.N., Bazanov, V.G., Tarasov, V.I.: Thermoelectric properties of solid solutions Mg2Si-Mg2Sn. Sov. Phys. Solid State 3(12), 2648 (1962)

    Google Scholar 

  129. Yang, M., Zhang, L., Shen, Q.: Synthesis and sintering of Mg2Si thermoelectric generator by spark plasma sintering. J. Wuhan Univ. Technol. Mater. Sci Ed 23(6), 870–873 (2008)

    Google Scholar 

  130. Lu, L., Lai, M.O., Hoe, M.L.: Formation of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg-Al alloy by mechanical alloying. Nanostruct. Mater. 10(4), 551–563 (1998)

    Google Scholar 

  131. Fiameni, S., Battiston, S., Boldrini, S., Famengo, A., Agresti, F., Barison, S., Fabrizio, M.: Synthesis and characterization of Bi-doped Mg2Si thermoelectric materials. J. Solid State Chem. 193, 142–146 (2012)

    Google Scholar 

  132. Wang, L., Qi, X.Y., Xiong, W., Zhu, X.G.: Fabrication and mechanical properties of bulk nanocrystalline intermetallic Mg2Si. Mater. Sci. Eng. A 459, 216–222 (2007)

    Google Scholar 

  133. Aymerich, F., Mula, G.: Pseudopotential band structures of Mg2Si, Mg2Ge, Mg2Sn, and of the solid solution Mg2(Ge, Sn). Physica Status Solidi (b) 42(697) (1970)

    Google Scholar 

Download references

Acknowledgement

We acknowledge the support of Air Force Office of Scientific Research (AFOSR) High Temperature Materials program under grant no. FA9550-10-1-0010 and the National Science Foundation (NSF) under grant no. 0933763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryoosh Vashaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Satyala, N., Norouzzadeh, P., Vashaee, D. (2014). Nano Bulk Thermoelectrics: Concepts, Techniques, and Modeling. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics