Skip to main content

Charge Carriers in Quantum Dots

  • Chapter
  • First Online:
Book cover Self-Organized Quantum Dots for Memories

Part of the book series: Springer Theses ((Springer Theses))

  • 757 Accesses

Abstract

A self-organized quantum dot acts as a potential well and can confine electrons and holes. Depending on the conditions in the surroundings of the QD, the number of charges occupying the QD can change over time The theory of carrier emission and capture is analogous to that of deep traps in semiconductors [1, 2]. Past experiments investigating the carrier dynamics of QDs have shown that the theory derived for deep traps is also valid for QDs [3–6]. The following chapter will derive the theory of carrier dynamics and the underlying emission and capture processes in QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The solution of the rate equation is derived for electrons. It is completely analogous for hole capture and emission.

  2. 2.

    \(N_C = 2\left( \frac{2 \pi m_n^{*} k T}{h^2}\right) ^{3/2}\).

References

  1. M. Lannoo, J. Bourgoin, Point Defects in Semiconductors I—Theoretical Aspects, volume 22 of Springer Series in Solid-State Sciences (Springer, Berlin, 1981)

    Google Scholar 

  2. P. Blood, J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, London, 1992)

    Google Scholar 

  3. C. Kapteyn, Carrier Emission and Electronic Properties of Self-Organized Semiconductor Quantum Dots, Mensch & Buch Verlag, Berlin (Technische Universität Berlin, Dissertation, 2001)

    Google Scholar 

  4. M. Geller, C. Kapteyn, L. Müller-Kirsch, R. Heitz, D. Bimberg, 450 meV hole localization energy in GaSb/GaAs quantum dots. Appl. Phys. Lett. 82(16), 2706–2708 (2003)

    Article  ADS  Google Scholar 

  5. M. Geller, Investigation of Carrier Dynamics in Self-Organized Quantum Dots for Memory Devices (Technische Universität Berlin, Dissertation, 2007)

    Google Scholar 

  6. A. Marent, Entwicklung einer neuartigen Quantenpunkt-Speicherzelle (Technische Universität Berlin, Dissertation, 2010)

    Google Scholar 

  7. T. Müller, F.F. Schrey, G. Strasser, K. Unterrainer, Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots. Appl. Phys. Lett. 83(17), 3572–3574 (2003)

    Article  ADS  Google Scholar 

  8. M. Geller, A. Marent, E. Stock, D. Bimberg, V.I. Zubkov, I.S. Shulgunova, A.V. Solomonov, Hole capture into self-organized InGaAs quantum dots. Appl. Phys. Lett. 89(23), 232105 (2006)

    Article  ADS  Google Scholar 

  9. U. Bockelmann, G. Bastard, Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42, 8947 (1990)

    Article  ADS  Google Scholar 

  10. R. Ferreira, G. Bastard, Phonon-assisted capture and intradot Auger relaxation in quantum dots. Appl. Phys. Lett. 74(19), 2818 (1999)

    Article  ADS  Google Scholar 

  11. J. Bourgoin, M. Lannoo, Point Defects in Semiconductors II— Experimental Aspects, volume 35 of Springer Series in Solid-State Sciences (Springer, Berlin, 1983)

    Google Scholar 

  12. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, NewYork, 2006)

    Google Scholar 

  13. D.V. Lang, C.H. Henry, Nonradiative recombination at deep levels in GaAs and GaP by lattice-relaxation multiphonon emission. Phys. Rev. B 35(22), 1525–1528 (1975)

    ADS  Google Scholar 

  14. J. Frenkel, On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647 (1938)

    Article  ADS  Google Scholar 

  15. G. Vincent, A. Chantre, D. Bois, Electric field effect on the thermal emission of traps in semiconductor junctions. J. Appl. Phys. 50(8), 5484 (1979)

    Article  ADS  Google Scholar 

  16. J.H. Davies, The Physics of Low-Dimensional Semiconductors. (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  17. W. Nolting, Grundkurs Theoretische Physik—Band 5/2: Quantenmechanik (Springer, Berlin, 2004)

    Book  Google Scholar 

  18. P.W. Fry, J.J. Finley, L.R. Wilson, A. Lemaitre, D.J. Mowbray, M.S. Skolnick, Electric-field-dependent carrier capture and escape in self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 77(26), 4344 (2000)

    Article  ADS  Google Scholar 

  19. J. Gelze, Ladungsträgerdynamik in Quantenpunkt-basierten Speicherbausteinen (Diplomarbeit, TU-Berlin, 2009)

    Google Scholar 

  20. T. Nowozin, A. Marent, M. Geller, D. Bimberg, N. Akçay, N. Öncan, Temperature and electric field dependence of the carrier emission processes in a quantum dot-based memory structure. Appl. Phys. Lett. 94, 042108 (2009)

    Article  ADS  Google Scholar 

  21. A. Marent, M. Geller, A. Schliwa, D. Feise, K. Pötschke, D. Bimberg, N. Akçay, N. Öncan, 10[sup 6] years extrapolated hole storage time in GaSb/AlAs quantum dots. Appl. Phys. Lett. 91(24), 242109 (2007)

    Article  ADS  Google Scholar 

  22. W. Nolting, Grundkurs Theoretische Physik—Band 7: Viel-Teilchen-Theorie (Springer, Berlin, 2009)

    Google Scholar 

  23. R.J. Warburton, B.T. Miller, C.S. Dürr, C. Bödefeld, K. Karrai, J.P. Kotthaus, G. Medeiros-Ribeiro, P.M. Petroff, S. Huant, Coulomb interactions in small charge-tunable quantum dots: A simple model. Phys. Rev. B 58(24), 16221–16231 (1998)

    Article  ADS  Google Scholar 

  24. A. Schliwa, M. Winkelnkemper, D. Bimberg, Few-particle energies versus geometry and composition of In\(_x\)Ga\(_{1-x}\)As/GaAs self-organized quantum dots. Phys. Rev. B 79, 075443 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nowozin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nowozin, T. (2014). Charge Carriers in Quantum Dots. In: Self-Organized Quantum Dots for Memories. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01970-3_3

Download citation

Publish with us

Policies and ethics