Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 660 Accesses

Abstract

In this chapter we will investigate the cosmos as a whole. First, we will try to approach the fundamental questions about the cosmos by resorting to various ideas and conceptional questions in order to understand the environment we live in. Then, we will investigate the tunnelling scenario in the framework of quantum cosmology. Finally, we will apply the results of the previous chapter to derive initial conditions for inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Karl Popper [51], a scientific theory has to make predictions that can be falsifiable.

  2. 2.

    This does not mean that the coupling constants in our patch of the cosmos must have the same values in different regions. Some authors even question if there is a fundamental meaning of physical laws at all or if they can also vary in different regions of the cosmos [61], but we will not follow these ideas.

  3. 3.

    There are approaches, such as string theory, which are even more ambitious and try to go beyond a quantization of gravity to find a “theory of everything”. See e.g. [49] for an overview and a summary of literature about string theory.

  4. 4.

    In cosmological minisuperspace models, the infinitely many degrees of freedom contained in the metric field \(g_{\mu \nu }(x)\) are usually reduced to a single degree of freedom, the homogeneous scale factor \(a(t)\).

  5. 5.

    Here, we use the terminology of DeWitt and Graham [28] who re-investigated Everett’s original work. Everett himself did not use the nomenclature “parallel worlds” but “relative states” [31].

  6. 6.

    In general, an arbitrary environmental degree of freedom cannot measure aspects of the system. Only those degrees of freedoms which can be modelled by local interaction between the environment and the system do participate in the process of measurement. For example a scattering process of photons with a molecule with centre of mass at a certain point will localize this object due to the electromagnetic interaction. The same setup with neutrinos instead of photons would not lead to such an efficient classical localization of that molecule, since the neutrinos will go through the molecule with almost no interaction.

  7. 7.

    The spectral theorem ensures that such an expansion is always possible for Hermitian operators.

  8. 8.

    Some authors, including Everett himself and Zurek, claim that the Born rule can be derived from the theory in terms of “relative frequencies” [31] or “envariance” [75] and is not an independent postulate. However, there are always some additional assumptions needed in the proofs of its derivation, so that it seems fair to say that the final status of this issue remains controversial.

  9. 9.

    The criterion of mutual orthogonality between two states \(|\! E_{i}\! \rangle \), \(|\! E_{j}\! \rangle \) is a measure of how well the environment can resolve the pointer positions.

  10. 10.

    They do not turn into an oscillating “cree” in the next moment, but we can be confident that the next morning our car still stands on the parking and the tree is still enrooted in the garden.

  11. 11.

    Although the process of continuous monitoring of the environment would take place just as well without our presence.

  12. 12.

    The continuous measurement of the system by the environment could perhaps also explain why we perceive time as continuous and uniform process. We do not mean the different clock rates due to relativistic effects, but rather the amount of continuous “information flow” carried away from the system into the environment and thereby increasing the entropy.

  13. 13.

    For example in a recollapsing universe or the “bounce” scenario of Loop Quantum Cosmology.

  14. 14.

    It could perhaps be interesting to relate the timescale of such a hypothetical “quantum re-coherence cycle” to a quantum version of the classical Poincaré recurrence theorem.

  15. 15.

    A discussion of the eternally ongoing reproduction of space-time can be found e.g. in [48].

  16. 16.

    This is a simplified presentation. In the context of string theory [60], the landscape is defined in a parameter-space of the dilaton fields, resulting from compactifications of extra dimensions.

  17. 17.

    In general, a factor ordering problem appears in the transition \(\mathcal{H}\rightarrow \hat{\mathcal{H}}\), leading to inequivalent quantum theories. We neglect this issue here.

  18. 18.

    See [45] for a systematical expansion of the Wheeler–DeWitt equation in powers of the Planck mass.

  19. 19.

    The formal analytic extension from \(N^0_\mathrm{{E}}=1\) to \(N^0_\mathrm{{E}}=-1\) should of course not be applied to \(a_\mathrm{{E}}(\tau )=\sin (N^0_\mathrm{{E}}\,H_\mathrm{{eff}}\tau )/H_\mathrm{{eff}}\) which would yield a negative \(a_\mathrm{{E}}(\tau )\) instead of (7.44) because in contrast to the sign-indefinite Lagrange multiplier \(N_\mathrm{{E}}\) the path integration over \(a_\mathrm{{E}}(\tau )\) in (7.35) semi-classically always runs in the vicinity of its positive geometrically meaningful value. For this reason, \(a_\mathrm{{E}}(\tau )\) never brings sign factors into the on-shell action even though it enters the action with odd powers.

  20. 20.

    Another interesting range of \(M_\mathrm{H}\) is below the instability threshold \(M_\mathrm{H}^\mathrm{inst}\) where \(\hat{V}_\mathrm{{RG}}\) becomes negative in the “true” high energy vacuum. As mentioned in the previous section, the tunnelling state rules out aperiodic solutions of effective equations with \(H^2<0\), which cannot contribute to the quantum ensemble of expanding Lorentzian signature models. Therefore, this range is semi-classically ruled out not only by the instability arguments, but also contradicts the tunnelling prescription.

  21. 21.

    This might seem to be equivalent to the tunnelling path integral of [64, 66], but the class of metrics integrated over is very different. We do not impose by hands \(a^{-}_\mathrm{{E}}=0\) as the boundary condition, but derive it from the saddle-point approximation for the integral over formally periodic configurations. The fact that periodicity gets violated by the boundary condition \(a^{-}_\mathrm{{E}}=0\) implies that the a priori postulated tunnelling statistical ensemble is exhausted at the dynamical level by the contribution of a pure vacuum state [7, 12, 13].

  22. 22.

    In the case of the vacuum no-boundary state when the vanishing thermal part of the effective action cannot present an obstacle to analytic continuation in the complex plane of \(N\), the situation stays the same. Indeed, any integration contour from \(-i\infty \) to \(+i\infty \) crosses the real axes an odd number of times, so that the contribution of only one such crossing survives, because any two (gauge-equivalent) saddle-points traversed in opposite directions give contributions cancelling one another.

References

  1. Antoniadis, I., Mazur, P.O., Mottola, E.: Scaling behavior of quantum four-geometries. Phys. Lett. B 323, 284 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  2. Antoniadis, I., Mottola, E.: Four-dimensional quantum gravity in the conformal sector. Phys. Rev. D 45, 2013 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  3. Asaka, T., Blanchet, S., Shaposhnikov, M.: The \(\nu \)MSM, dark matter and neutrino masses. Phys. Lett. B 631, 151 (2005)

    Article  ADS  Google Scholar 

  4. Asaka, T., Shaposhnikov, M.: The \(\nu \)MSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620, 17 (2005)

    Article  ADS  Google Scholar 

  5. Barvinsky, A.O.: Unitarity approach to quantum cosmology. Phys. Rep. 230, 237 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  6. Barvinsky, A.O.: Reduction methods for functional determinants in quantum gravity and cosmology. Phys. Rev. D 50, 5115 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  7. Barvinsky, A.O.: Why there is something rather than nothing: cosmological constant from summing over everything in Lorentzian quantum gravity. Phys. Rev. Lett. 99, 071301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. Barvinsky, A.O., Deffayet, C.: Anomaly driven cosmology: big boost scenario and AdS/CFT correspondence. J. Cosmol. Astropart. Phys. 05, 020 (2008)

    Google Scholar 

  9. Barvinsky, A.O., Kamenshchik, A.Yu.: 1-loop quantum cosmology: the normalizability of the Hartle-Hawking wave function and the probability of inflation. Class. Quantum Grav. 7, L181 (1990)

    Google Scholar 

  10. Barvinsky, A.O., Kamenshchik, A.Yu.: Quantum scale of inflation and particle physics of the early universe. Phys. Lett. B 332, 270 (1994)

    Google Scholar 

  11. Barvinsky, A.O., Kamenshchik, A.Yu.: Effective equations of motion and initial conditions for inflation in quantum cosmology. Nucl. Phys. B 532, 339 (1998)

    Google Scholar 

  12. Barvinsky, A.O., Kamenshchik, A.Yu.: Cosmological landscape from nothing: some like it hot. J. Cosmol. Astropart. Phys. 09, 014 (2006)

    Google Scholar 

  13. Barvinsky, A.O., Kamenshchik, A.Yu.: Thermodynamics via creation from nothing: Limiting the cosmological constant landscape. Phys. Rev. D 74, 121502 (2006)

    Google Scholar 

  14. Barvinsky, A.O., Kamenshchik, A.Yu.: Effective action and decoherence by fermions in quantum cosmology. Nucl. Phys. B 552, 420 (1999)

    Google Scholar 

  15. Barvinsky, A.O., Kamenshchik, A.Yu.: Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. J. Cosmol. Astropart. Phys. 12, 003 (2009)

    Google Scholar 

  16. Barvinsky, A.O., Kamenshchik, A.Yu.: Higgs boson, renormalization group, and naturalness in cosmology. Eur. Phys. J. C. 72, 2219 (2012)

    Google Scholar 

  17. Barvinsky, A.O., Kamenshchik, A.Yu.: Inflation scenario via the Standard Model Higgs boson and LHC. J. Cosmol. Astropart. Phys. 11, 021 (2008)

    Google Scholar 

  18. Barvinsky, A.O., Nesterov, D.V.: Effective equations in quantum cosmology. Nucl. Phys. B 608, 333 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  20. Bezrukov, F., Shaposhnikov, M.: Standard model Higgs boson mass from inflation: two loop analysis. J. High Energy Phys. 07, 089 (2009)

    Article  ADS  Google Scholar 

  21. Bezrukov, F.L., Magnin, A., Shaposhnikov, M.: Standard Model Higgs boson mass from inflation. Phys. Lett. B 675, 88 (2009)

    Article  ADS  Google Scholar 

  22. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  MATH  Google Scholar 

  23. Brezger, B., Hackmüller, L., Uttenthaler, S., Petschinka, J., Arndt, M., Zeilinger, A.: Matter-wave interferometer for large molecules. Phys. Rev. Lett. 88, 100404 (2002)

    Article  ADS  Google Scholar 

  24. Clark, T.E., Liu, B., Love, S.T., ter Veldhuis, T.: Standard model Higgs boson-inflaton and dark matter. Phys. Rev. D 80, 075019 (2009)

    Article  ADS  Google Scholar 

  25. Coleman, S.: Aspects of Symmetry. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  26. De Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the standard model. Phys. Lett. B 678, 1 (2009)

    Article  ADS  Google Scholar 

  27. DeWitt, B.S.: Quantum theory of gravity. I canonical theory. Phys. Rev. 160, 1113 (1967)

    Article  ADS  MATH  Google Scholar 

  28. DeWitt, B.S., Graham, N.: The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  29. Dirac, P.A.M.: Lectures on Quantum Mechanics, 2nd edn. Yeshiva University, New York, Belfer Graduate School of Science (1964)

    Google Scholar 

  30. Espinosa, J.R., Giudice, G.F., Riotto, A.: Cosmological implications of the Higgs mass measurement. J. Cosmol. Astropart. Phys. 05, 002 (2008)

    Article  ADS  Google Scholar 

  31. Everett, H.: “Relative State” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  32. Fischetti, M. V., Hartle, J. B., Hu, B. L. Quantum effects in the early universe. I. Influence of trace anomalies on homogeneous, isotropic, classical geometries. Phys. Rev. D 20, 1757 (1979)

    Google Scholar 

  33. Fradkin, E.S., Tseytlin, A.A.: Conformal anomaly in Weyl theory and anomaly free superconformal theories. Phys. Lett. B 134, 187 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Hackmüller, L., Hornberger, K., Brezger, B., Zeilinger, A., Arndt, M.: Decoherence of matter waves by thermal emission of radiation. Nature 427, 711 (2004)

    Article  ADS  Google Scholar 

  35. Halliwell, J. J., Louko, J.: Steepest-descent contours in the path-integral approach to quantum cosmology. III. A general method with applications to anisotropic minisuperspace models. Phys. Rev. D 42, 3997 (1990)

    Google Scholar 

  36. Hartle, J.B., Hawking, S.W.: Wave function of the Universe. Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  37. Hawking, S.W.: The boundary condition of the universe. Pontificia Acad. Scientarium Scr. Varia 48, 563 (1982)

    Google Scholar 

  38. Hawking, S.W.: The quantum state of the universe. Nucl. Phys. B 239, 257 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  39. Kiefer, C.: On the meaning of path integrals in quantum cosmology. Ann. Phys. (NY) 207, 53 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Kiefer, C.: Decoherence in quantum electrodynamics and quantum gravity. Phys. Rev. D 46, 1658 (1992)

    Article  ADS  Google Scholar 

  41. Kiefer, C.: Semiclassical gravity and the problem of time. http://arxiv.org/abs/gr-qc/9405039 (1993). Accessed 11 January 2012 (6 pages)

  42. Kiefer, C.: Conceptual issues in quantum cosmology. Lect. Notes Phys. 541, 158 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  43. Kiefer, C.: Quantum Gravity, 2nd edn. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  44. Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Origin of classical structure in the Universe. J. Phys. Conf. Ser. 67, 012023 (2007)

    Article  ADS  Google Scholar 

  45. Kiefer, C., Singh, T.P.: Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev. D 44, 1067 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  46. Linde, A.D.: Quantum creation of an inflationary universe. Sov. Phys. JETP 60, 211 (1984)

    Google Scholar 

  47. Linde, A.D.: Quantum creation of the inflationary universe. Lett. Nuovo Cimento 39, 401 (1984)

    Article  ADS  Google Scholar 

  48. Linde, A.D.: Eternal chaotic inflation. Mod. Phys. Lett. A 1, 81 (1986)

    Article  ADS  Google Scholar 

  49. Marolf, D.: Resource letter NSST-1: the nature and status of string theory. Am. J. Phys. 72, 730 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Perlmutter, S., et al., Supernova Cosmology Project.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Google Scholar 

  51. Popper, K.: Logik der Forschung. Springer, Vienna (1935)

    Book  Google Scholar 

  52. Riegert, R.J.: A nonlocal action for the trace anomaly. Phys. Lett. B 134, 56 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Rubakov, V.A.: Particle creation in a tunneling universe. JETP Lett. 39, 107 (1984)

    ADS  Google Scholar 

  54. Schlosshauer, M.A.: Decoherence and the Quantum-To-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  55. Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Google Scholar 

  56. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwiss 23, 807 (1935)

    Article  ADS  Google Scholar 

  57. Shaposhnikov, M., Zenhausern, D.: Quantum scale invariance, cosmological constant and hierarchy problem. Phys. Lett. B 671, 162 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  58. Sher, M.: Electroweak Higgs potentials and vacuum stability. Phys. Rep. 179, 273 (1989)

    Article  ADS  Google Scholar 

  59. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  60. Susskind, L.: The anthropic landscape of string theory. http://arxiv.org/abs/hep-th/0302219 (2003). Accessed 11 January 2012 (22 pages)

  61. Tegmark, M.: The multiverse hierarchy. http://arxiv.org/abs/0905.1283 (2007). Accessed 11 January 2012 (15 pages)

  62. Vachaspati, T., Vilenkin, A.: Uniqueness of the tunneling wave function of the universe. Phys. Rev. D 37, 898 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  63. Vilenkin, A.: Creation of universes from nothing. Phys. Lett. B 117, 25 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  64. Vilenkin, A.: Quantum creation of universes. Phys. Rev. D 30, 509 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  65. Vilenkin, A.: Quantum cosmology and the initial state of the universe. Phys. Rev. D 37, 888 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  66. Vilenkin, A.: Approaches to quantum cosmology. Phys. Rev. D 50, 2581 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  67. Vilenkin, A.: The quantum cosmology debate. http://arxiv.org/abs/gr-qc/9812027 (1998). Accessed 11 January 2012 (9 pages)

  68. Vilenkin, A.: The Wave function discord. Phys. Rev. D 58, 067301 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  69. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  70. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres, pp. 242–307. Benjamin, New York (1968)

    Google Scholar 

  71. Wigner, E.P.: Remarks on the mind-body question. In: Good, I.J. (ed.) The Scientist Speculates: An Anthology of Partly-Baked Ideas, pp. 284–302. Heinemann, London (1961)

    Google Scholar 

  72. Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  73. Zeldovich, Y.B., Starobinsky, A.A.: Quantum creation of a universe in a nontrivial topology. Sov. Astron. Lett. 10, 135 (1984)

    ADS  Google Scholar 

  74. Zurek, W. H.: Decoherence and the transition from quantum to classical. Phys. Today 44N10, 36 (1991)

    Google Scholar 

  75. Zurek, W.H.: Probabilities from entanglement, Born’s rule \(p_{k}=|\psi _{k}|^2\) from envariance. Phys. Rev. A 71, 052105 (2005)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Friedrich Steinwachs .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinwachs, C.F. (2014). Quantum Cosmology. In: Non-minimal Higgs Inflation and Frame Dependence in Cosmology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01842-3_7

Download citation

Publish with us

Policies and ethics