Skip to main content

Integrated Approach for Archaeological Prospection Exploiting Airborne Hyperspectral Remote Sensing

  • Chapter
  • First Online:
Good Practice in Archaeological Diagnostics

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

  • 1714 Accesses

Abstract

Earth observation activities, used to detect buried archaeological remains and survey the archaeological landscape, can exploit the integration of multi-platform (i.e. satellite, airborne and in situ), multi-sensor (i.e. active and passive, multi – and hyperspectral) and frequency data in order to carry out calibration and validation activities, merge different data, compare and append the results of each datum and export the characteristic methods of each datum, technique and application for use with other data, techniques and applications. The aim of this paper is to describe this integrated approach through research activities. This approach was adopted not only to improve the performance of calibration and validation activities, but also to enhance the capability of airborne hyperspectral data in detecting buried archaeological remains and surveying the archaeological landscape. Thus, this integrated approach encouraged the collaboration of researchers in different fields. This improvement was evaluated by ranking the capability of each band of each collected sensor, the capability of each merged image and the capability of each synthetic image obtained to export the characteristic methods of each datum, technique and application to other data, techniques and applications. The results of this evaluation were that the ability (to detect buried archaeological structures and survey the archaeological landscape) of synthetic images (obtained to export the characteristic methods of each datum, technique and application to other data, techniques and applications) is greater than the ability of each single band of each collected sensor and the ability of each merged image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agapiou A, Hadjimitsis DG (2011) Vegetation indices and field spectroradiometric measurements for validation of buried architectural remains: verification under area surveyed with geophysical campaigns. J Appl Remote Sens 5(1):053554. doi:10.1117/1.3645590

    Article  Google Scholar 

  • Agapiou A, Hadjimitsis DG, Sarris A, Themistocleous K, Papadavid G (2010) Hyperspectral ground truth data for the detection on buried architectural remains. In: Ioannides M et al (eds) Digital heritage. Third international conference, EuroMed 2010. Springer, Berlin/Heidelberg, pp 318–331, LNCS 6436

    Google Scholar 

  • Alexakis D, Sarris A, Astaras T, Albanakis K (2009) Detection of Neolithic settlements in Thessaly (Greece) through multispectral and hyperspectral satellite imagery. Sensors 9(2):1167–1187

    Article  Google Scholar 

  • Aqdus SA, Hanson WS, Drummond J (2007) A comparative study for finding archaeological crop marks using airborne hyperspectral, multispectral and digital photographic data. In: Challenges for earth observation: scientific, technical and commercial. Proceedings of the 2007 annual conference of the remote sensing & photogrammetry society, RSPSoc2007, Newcastle upon Tyne, 11–14 Sept 2007. Remote Sensing and Photogrammetry Society, Nottingham

    Google Scholar 

  • Aqdus SA, Hanson WS, Drummond J (2012) The potential of hyperspectral and multi-spectral imagery to enhance archaeological cropmark detection: a comparative study. J Archaeol Sci 39(7):1915–1924

    Article  Google Scholar 

  • Ardissone P, Boccardo P, Borgogno Mondino E (2003) Digital images processing of hyperspectral airborne data: a cultural example. In: Proceedings of CIPA XIX international symposium, Commission V, WG V/5, Antalya, 30 September–4 October 2003, pp 202–205

    Google Scholar 

  • Argote-Espino D, Chávez RE (2005) Detection of the possible archaeological pathways in Central Mexico through digital processing of remote sensing images. Archaeol Prospect 12(2):105–114

    Article  Google Scholar 

  • Aspinall RJ, Andrew Marcus W, Boardman JW (2002) Considerations in collecting, processing, and analyzing high spatial resolution hyperspectral data for environmental investigations. J Geogr Syst 4(1):15–29

    Article  Google Scholar 

  • Barnsley MJ, Settle JJ et al (2004) The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral, multi-angle, observations of the earth surface and atmosphere. IEEE Trans Geosci Remote Sens 42(7):1512–1520

    Article  Google Scholar 

  • Bassani C, Cavalli RM, Palombo A, Pignatti S, Madonna F (2006) Laboratory activity for a new procedure of MIVIS calibration and relative validation with test data. Ann Geophys 49(1):45–56

    Google Scholar 

  • Bassani C, Cavalli RM, Goffredo R, Palombo A, Pascucci S, Pignatti S (2009) Specific spectral bands for different land cover contexts to improve the efficiency of remote sensing archaeological prospection: the Arpi case study. J Cult Herit 10(S1):41–48

    Article  Google Scholar 

  • Bassani C, Cavalli RM, Pignatti S (2010) Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land. Sensors 10(7):6421–6438

    Article  Google Scholar 

  • Battrick B (2005) Global Earth Observation System of Systems: (GEOSS): 10-Year Plan Reference Document, pp.197–210; ESA Publications Div

    Google Scholar 

  • Ben-Dor E, Portugali J, Kochavi M, Shimoni M, Vinitzky L (1999) Airborne thermal video radiometry and excavation planning at Tel Leviah, Golan Heights, Israel. J Field Archaeol 26(2):117–127

    Article  Google Scholar 

  • Bianchi R, Cavalli RM, Fiumi L, Marino CM, Pignatti S, Pizzaferri G (1996) 1994–1995 CNR LARA Project airborne hyperspectral campaigns. In: Proceedings Of The Thematic Conference On Geologic Remote Sensing 1996, 27–29 February, Las Vegas USA. Environmental Research Institute Of Michigan, pp. II 301–II 311

    Google Scholar 

  • Bianchi R, Cavalli RM, Marino CM, Pignatti S (1998a) Il telerilevamento aereo per lo studio dei beni archeologici. Le campagne di acquisizione dati sul Parco Archeologico di Selinunte. In: Bianchi R (ed) Selinunte, 4: Intesa di programma CNR-MISM. Progetto strategico tecnologie moderne per la conservazione dei beni culturali. Bulzoni, Roma, pp 321–335

    Google Scholar 

  • Bianchi R, Cavalli RM, Corsi C, Marino CM, Pignatti S (1998b) Ricerche topografiche in Sicilia: integrazione tra metodi tradizionali e dati iperspettrali da piattaforma aerea. In: Proceedings of the XVth international congress of classical archaeology, Amsterdam, 12–17 July 1998. Allard Pierson, Amsterdam, pp 15–16

    Google Scholar 

  • Boccardo P, Tonolo FG, Spanò A (2002) GIS design using high geometric resolution satellite images and hyperspectral airborne data. Int Arch Photogramm Remote Sens Spat Inf Sci 34(5):309–314

    Google Scholar 

  • Bradford JSP (1949) Buried landscapes in Southern Italy. Antiquity 23:58–72

    Google Scholar 

  • Bradford JSP (1950) The Apulia expedition. Antiquity 24:84–95

    Google Scholar 

  • Bradford JSP (1957) The ancient city of Arpi in Apulia. Antiquity 31:167–169

    Google Scholar 

  • Buck PE, Sabol DE, Gillespie AR (2003) Sub-pixel artifact detection using remote sensing. J Archaeol Sci 30:973–989

    Article  Google Scholar 

  • Cavalli RM, Pignatti S (2009) Telerilevamento iperspettrale per i rilievi archeologici. In: Giorgi E (ed) Groma 2. In profondità senza scavare. Metodologie di indagine non invasiva e diagnostica per l’archeologia. BraDypUS, Bologna, pp 159–169

    Google Scholar 

  • Cavalli RM, Colosi F, Pignatti S, Poscolieri M (1998) II telerilevamento aereo per lo studio dei beni archeologici. Applicazione dei dati iperspettrali sul Parco Archeologico di Selinunte. In: Bianchi R (ed) Selinunte, 4: Intesa di programma CNR-MISM. Progetto strategico tecnologie moderne per la conservazione dei beni culturali. Bulzoni, Roma, pp 339–358

    Google Scholar 

  • Cavalli RM, Merola P, Pignatti S, Poscolieri M (2005) Telerilevamento iperspettrale MIVIS per lo studio delle testimonianze antropiche nell’area archeologica di Arpi (FG) Italia. Rivista Italiana di Telerilevamento 33(34):109–117

    Google Scholar 

  • Cavalli RM, Colosi F, Palombo A, Pignatti S, Poscolieri M (2007) Remote hyperspectral imagery as a support to archaeological prospection. J Cult Herit 8(3):272–283

    Article  Google Scholar 

  • Cavalli RM, Pascucci S, Pignatti S (2009) Optimal spectral domain selection for maximizing archaeological signatures: Italy case studies. Sensors 9(3):1754–1767

    Article  Google Scholar 

  • Cavalli RM, Masini N, Pascucci S, Palombo A, Pignatti S (2010) Integration of thermal and hyperspectral VNIR imagery for architectural and artistic heritage analysis and monitoring. In: EGU General Assembly 2010, 2–7 May 2010, Vienna, Austria, vol 12, Geophysical research abstracts. EGU General Assembly, Vienna, p 4919

    Google Scholar 

  • Cavalli RM, Licciardi GA, Chanussot J (2013) Detection of anomalies produced by buried archaeological structures using nonlinear principal component analysis applied to airborne hyperspectral image. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):659–669

    Article  Google Scholar 

  • Challis K, Kincey M, Howard A (2009) Airborne remote sensing of valley floor geoarchaeology using daedalus ATM and CASI archaeological prospection. Archaeol Prospect 16:17–33

    Article  Google Scholar 

  • Clark CD, Garrod SM, Parker Pearson M (1998) Landscape archaeology and remote sensing in southern Madagascar. Int J Remote Sens 19(8):1461–1477

    Article  Google Scholar 

  • Coren F, Visintini D, Fales FM, Sterzai P, Prearo G, Rubinich M (2005) Integrazione di dati laserscanning ed iperspettrali per applicazioni archeologiche. In: Atti della 9a Conferenza Nazionale ASITA, 15–18 novembre 2005, vol 1. ASITA, Catania, pp 793–798

    Google Scholar 

  • Emmolo D, Franco V, Lo Brutto M, Orlando P, Villa B (2004) Hyperspectral techniques and GIS for archaeological investigation. In: International archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXV, part B7, XXth ISPRS Congress, Istanbul, 12–23 July 2004, pp 492–497

    Google Scholar 

  • Fowler JE, Du Q (2012) Anomaly detection and reconstruction from random projections. IEEE Trans Image Process 21(1):184–195

    Article  Google Scholar 

  • Galeazzi C, Ananasso C, Loizzo R (2009) The PRISMA mission. In: 6th EARSeL workshop, Tel Aviv, Israel, 16–18 Mar 2009

    Google Scholar 

  • GEOSS (2005) 10-year implementation plan. Reference document, February 2005

    Google Scholar 

  • Gianinetto M, Lechi G (2004) The development of superspectral approaches for the improvement of land cover classification. IEEE Trans Geosci Remote Sens 42:2670–2679

    Article  Google Scholar 

  • Giardino M, Haley BS (2006) Airborne remote sensing and geospatial analysis. In: Johnson JK (ed) Remote sensing in archaeology: an explicitly North American perspective. University of Alabama Press, Tuscaloosa, pp 47–77

    Google Scholar 

  • Goetz AFH (2009) Three decades of hyperspectral remote sensing of the earth: a personal view. Remote Sens Environ 113:5–16

    Article  Google Scholar 

  • Goetz AFH, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for earth remote sensing. Science 228:1147–1153

    Article  Google Scholar 

  • Goudail F, Roux N, Baarstad I, Løke T, Kaspersen P, Alouini M, Normandin X (2006) Some practical issues in anomaly detection and exploitation of regions of interest in hyperspectral images. Appl Optics 45(21):5223–5236

    Article  Google Scholar 

  • Greening M-C (2012) Five-year plan 2011–2016. Working group on calibration and validation. Committee on Earth Observation Satellites, Version 5.4, July 2012. Available at http://www.ceos.org/images/WGCV/WGCV35/WGCV_work_plan_v5.4.pdf

  • Gupta RP (1991) Interpretation of data in the thermal infrared region. In: Gupta RP (ed) Remote sensing geology. Springer, Berlin, pp 183–216

    Chapter  Google Scholar 

  • Jensen JR (1996) Introductory digital image processing: a remote sensing perspective. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Kahle AB (1987) Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California. Geophysics 52(7):858–874

    Article  Google Scholar 

  • Kaufmann H, Segl K, Guanter L, Hofer S, Förster K-P, Stuffler T, Mueller A, Richter R, Bach H, Hostert P, Chlebek C (2008) Environmental Mapping and Analysis Program (EnMAP) – recent advances and status. In: Geoscience and remote sensing. IEEE international symposium – IGARSS, 7–11 July 2008, vol 4. NJ IEEE Service Center, Piscataway, pp 109–112

    Google Scholar 

  • Malagoli P, De Paolis R (2001) MIVIS dalla sperimentazione alle applicazioni. Rivista Italiana di Telerilevamento 20(21):145–149

    Google Scholar 

  • Merola P, Guglietta D, Sampieri S, Allegrini A (2008) Lylibaeum reconstruction by remotely data. In: Remote sensing for archaeology and cultural heritage management, Proceedings of the 1st international EARSeL workshop. CNR, Rome, pp 71–74

    Google Scholar 

  • Miller WC (1957) Uses of aerial photographs in archaeological field work. Am Antiquity 23(1):46–62

    Article  Google Scholar 

  • Pascucci S, Cavalli RM, Palombo A, Pignatti S (2010) Suitability of CASI and ATM airborne remote sensing data for archaeological subsurface structure detection under different land cover: the Arpi case study (Italy). J Geophys Eng 7:183–189

    Article  Google Scholar 

  • Piccarreta F (1987) Manuale di fotografia aerea: uso archeologico, vol 42, Studia Archaeologica. L’Erma Di Bretschneider, Roma

    Google Scholar 

  • Reeves DM (1936) Aerial photography and archaeology. Am Antiquity 2(2):102–107

    Article  Google Scholar 

  • Rowlands A, Sarris A (2007) Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. J Archaeol Sci 34:795–803

    Article  Google Scholar 

  • Schmiedt G (1966) Contributo della foto-interpretazione alla ricostruzione del paesaggio agrario altomedievale. In: Settimane di Studio del Centro Italiano di Studi sull’AltoMedioevo XIII, 22–28 April 1965. Centro italiano di studi sull’alto medioevo, Spoleto, pp 771–837, tables I-XLVIII

    Google Scholar 

  • Schmiedt G (1968) Le fortificazioni altomedievali viste dall’aereo. In: Ordinamenti militari in Occidente nell’Alto Medioevo: Settimane di Studio del Centro Italiano di Studi sull’Alto Medioevo XV, 30 March – 5 April 1967, vol II. Centro italiano di studi sull’alto medioevo, Spoleto, pp 860–927, tables I-XL

    Google Scholar 

  • Server TL (1998) Validating prehistoric and current social phenomena upon the landscape of Peten, Guatemala. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. National Academy Press, Washington, DC, pp 145–163

    Google Scholar 

  • Stein DJW, Beaven SG, Hoff LE, Winter EM, Schaum AP, Stocker AD (2002) Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag 19(1):58–69

    Article  Google Scholar 

  • Traviglia A (2011) Integrated archaeological investigations for the study of the Greater Aquileia Area. In: The new technologies for Aquileia. Proceedings of the 1st workshop, Aquileia, Italy, 2 May 2011, pp 1–14

    Google Scholar 

  • Ungar SG, Pearlman JS, Mendenhall JA, Reuter D (2003) Overview of the earth observing one (EO-1) mission. IEEE Trans Geosci Remote Sens 41:1149–1153

    Article  Google Scholar 

  • Winterbottom SJ, Dawson T (2005) Airborne multi-spectral prospection for buried archaeology in mobile sand dominated systems. Archaeological prospection. Archaeol Prospect 12:205–219

    Article  Google Scholar 

  • Zhang L, Du B, Zhong Y (2010) Hybrid detectors based on selective endmembers. IEEE Trans Geosci Remote Sens 48(6):2633–2646

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Maria Cavalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cavalli, R.M. (2013). Integrated Approach for Archaeological Prospection Exploiting Airborne Hyperspectral Remote Sensing. In: Corsi, C., Slapšak, B., Vermeulen, F. (eds) Good Practice in Archaeological Diagnostics. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-01784-6_5

Download citation

Publish with us

Policies and ethics