Image Processing and Communications Challenges 5

Volume 233 of the series Advances in Intelligent Systems and Computing pp 143-151

Object Detection and Segmentation Using Adaptive MeanShift Blob Tracking Algorithm and Graph Cuts Theory

  • Boudhane MohcineAffiliated withLIAD. Faculty of Sciences, Hassan II University Email author 
  • , Nsiri BenayadAffiliated withLIAD. Faculty of Sciences, Hassan II University

* Final gross prices may vary according to local VAT.

Get Access


In this paper, we present method of detection, segmentation and tracking to different objects in video sequence in real-time. We propose new approach based on Blob tracking, the technique, we find a hybrid combination between tracking-detection, in blob tracking use detection model based on two pieces of information; brightness and color. Our approach adds new properties in these blobs based on shape features extractions, where we define several properties for efficient detection. These blobs, present objects detected, the motion is estimated by non-parametric Kernel density estimation by using MeanShift algorithm to track this blobs. Segmentation is performed by GraphCuts approach; it generates and updates a set of Blobs in the sequence. Experimental results demonstrate that our method is robust for challenging data and present many advantages inside other approaches.