Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 500))

Abstract

This chapter describes a new approach to synthesize an artificial visual cortex based on what we call brain programming. Primate brains have several distinctive features that help in the outstanding display of perception achieved by the visual system, including binocular vision, memory, learning, and recognition, to mention only a few. These features are obtained by a complex arrangement of highly interconnected and numerous cortical visual areas. This chapter describes a system composed of an artificial dorsal pathway, or where stream, and an artificial ventral pathway, or what stream, that are fused to create a kind of artificial visual cortex. The idea is to show that brain programming is able to evolve a high number of heterogeneous trees thanks to the hierarchical structure of our virtual brain. Thus, the proposal uses two key ideas: 1) the recognition of objects can be achieved by a hierarchical structure using the concept of function composition, 2) the evolved functions can be discovered through the application of multiple runs of genetic programming that works concurrently using the hierarchical structure. Experimental results provide evidence that high recognition rates could be achieved for a well-known multiclass object recognition problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, F.J.: Teleological Explanations in Evolutionary Biology. Philosophy of Science 37(1), 1–15 (1970)

    Article  MathSciNet  Google Scholar 

  2. Barton, R.A.: Visual specialization and brain evolution in primates. Proceedings of the Royal Society of London Series B-Biological Sciences 265(1409), 1933–1937 (1998)

    Article  Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  4. Clemente, E., Olague, G., Dozal, L., Mancilla, M.: Object Recognition with an Optimized Ventral Stream Model Using Genetic Programming. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 315–325. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Creem, S.H., Proffitt, D.R.: Defining the cortical visual systems: “what”, “where”, and “how”. Acta Psychologica 107, 43–68 (2001)

    Article  Google Scholar 

  6. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995)

    Article  Google Scholar 

  7. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007)

    Article  Google Scholar 

  8. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  9. Holland, J.H.: Complex Adaptive Systems. Daedalus 121(1), 17–30 (1992)

    Google Scholar 

  10. Hoquet, T.: Darwin teleologist? Design in the orchids. Comptes Rendus Biologies 333(2), 119–128 (2010)

    Article  Google Scholar 

  11. Hubel, D.H.: Exploration of the primary visual cortex, 1955-78. Nature, 515–524 (October 1982)

    Google Scholar 

  12. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1953)

    Google Scholar 

  13. Itti, L., Koch, C.: Computational modelling of visual attention. Nature Review Neuroscience 2(3), 194–203 (2001)

    Article  Google Scholar 

  14. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Lennox, J.G.: Darwin was a teleologist. Biology and Philosophy 8(4), 409–421 (1993)

    Article  Google Scholar 

  17. Mel, B.W.: Seemore: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition. Neural Computation 9(4), 777–804 (1997)

    Article  Google Scholar 

  18. Milanese, R.: Detecting salient regions in an image: from biological evidence to computer implementation. PhD thesis, Department of Computer Science, University of Genova, Switzerland (December 1993)

    Google Scholar 

  19. Milner, A.D., Goodale, M.A.: The Visual Brain in Action, 2nd edn. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  20. Mutch, J., Lowe, D.G.: Object Class Recognition and Localization Using Sparse Features with Limited Receptive Fields. Int. J. Comput. Vision 80, 45–57 (2008)

    Article  Google Scholar 

  21. Olague, G.: Evolutionary Computer Vision – The First Footprints (to appear)

    Google Scholar 

  22. Oram, M.W., Perrett, D.I.: Modeling visual recognition from neurobiological constraints. Neural Networks 7(6), 945–972 (1994)

    Article  Google Scholar 

  23. Rensink, R.A.: The Dynamic Representation of Scenes. Visual Cognition 7(1-3), 17–42 (2000)

    Article  Google Scholar 

  24. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2, 1019–1025 (1999)

    Article  Google Scholar 

  25. Schneider, G.E.: Contrasting Visuomotor Functions of Tectum and Cortex in the Golden Hamster. Psychologische Forschung 31(1), 52–62 (1967)

    Article  Google Scholar 

  26. Schneider, G.E.: Two Visual Systems. Science 163(3870), 895–902 (1969)

    Article  Google Scholar 

  27. Serre, T., Kouh, C., Cadieu, M., Knoblich, G., Kreiman, U., Poggio, T.: A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex. Technical report, Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory, CBCL-259 (2005)

    Google Scholar 

  28. Short, T.L.: Darwin’s concept of final cause: neither new nor trivial. Biology and Philosophy 17, 323–340 (2002)

    Article  Google Scholar 

  29. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)

    Article  Google Scholar 

  30. Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5(7), 682–687 (2002)

    Google Scholar 

  31. Ungerleider, L.G., Haxby, J.V.: “What” and “where” in the human brain. Current Opinion in Neurobiology 4(2), 157–165 (1994)

    Article  Google Scholar 

  32. Mishkin, M.M., Ungerleider, L.G., Macko, K.A.: Object vision and spatial vision: two cortical pathways. Trends in Neurosciences 6, 414–417 (1983)

    Article  Google Scholar 

  33. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19(9), 1395–1407 (2006)

    Article  MATH  Google Scholar 

  34. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nat. Rev. Neurosci. 5(6), 495–501 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Olague .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Olague, G., Clemente, E., Dozal, L., Hernández, D.E. (2014). Evolving an Artificial Visual Cortex for Object Recognition with Brain Programming. In: Schuetze, O., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. Studies in Computational Intelligence, vol 500. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01460-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01460-9_5

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01459-3

  • Online ISBN: 978-3-319-01460-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics