Skip to main content

Energy in Biology—Demand and Use

  • Chapter
  • First Online:
  • 1873 Accesses

Abstract

From the point of view of energy management in biological systems, a fundamental requirement is to ensure spontaneity. Process spontaneity is necessary since in a thermodynamically open system—such as the living cell—only spontaneous reactions can be catalyzed by enzymes. Note that enzymes do not, by themselves, contribute additional energy. Spontaneity of biological processes may be expressed by the following correlation:

ΔG = ΔH − TΔS where ΔG means the change of free energy, ΔH—change of enthalpy, ΔS—change of entropy, T—temperature. Desirable processes which do not occur on their own must be coupled to other highly spontaneous mechanisms serving as energy sources. In biology, the fundamental sources of energy involve synthesis of water and photosynthesis. Since both processes are rather complex and cannot be exploited directly, they are used to synthesize ATP which acts as an energy carrier. Approaching biology from the point of view of elementary physics and chemistry reveals important mechanisms and enhances our understanding of various phenomena.

A coupled energy source is a prerequisite of sustained dynamics in thermodynamically open systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Buss F, Luzio JP, Kendrick-Jones J (2002) Myosin VI, an actin motor for membrane traffic and cell migration. Traffic 3:851–858

    Article  PubMed  CAS  Google Scholar 

  • Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compliant substrates. Nature 322:1687–1695

    CAS  Google Scholar 

  • Changeux J-P, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308:1424–1428

    Article  PubMed  CAS  Google Scholar 

  • Cooper GM (1997) The cell—a molecular approach. ASM Press, Washington

    Google Scholar 

  • DeWitt MA, Chang AY, Combs PA, Yildiz A (2012) Cytoplasmic dynein moves through uncoordinated stepping of the AAA + ring domains. Science 335:221–225

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscape and motions of proteins. Science 254:1598–1603

    Article  PubMed  CAS  Google Scholar 

  • Garret RH, Grisham CM (1995) Biochemistry Saunders College Publishing Harcourt Brace College Publishers, New York

    Google Scholar 

  • Glaser R (2002) Biophysics. Springer

    Google Scholar 

  • Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins Struct Func Bioinfo 57:433–443

    Article  CAS  Google Scholar 

  • Hardie DG (2011) How cells sense energy. Nature 472:176–177

    Article  PubMed  CAS  Google Scholar 

  • Helenius J, Brouhard G, Kalaidzidis Y, Diez S, Howard J (2006) The depolymerising kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441:115–119

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (1998) Getting to grips with contraction: the interplay of structure and biochemistry. TIPS 23:84–87

    CAS  Google Scholar 

  • Junge W, Lill H, Engelbrecht S (1997) ATP-synthase: an electrochemical transducer with rotatory mechanics. TIBS 22:420–423

    PubMed  CAS  Google Scholar 

  • Langford GM (2002) Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3:859–865

    Article  PubMed  CAS  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (1999) Molecular cell biology. W. H. Freeman and Company

    Google Scholar 

  • Navizet I, Lavery R, Jernigan RL (2004) Myosin flexibility: structural domains and collective vibrations. Proetisn Struct Func. Bioinfo 54:384–393

    CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics. Academic Press

    Google Scholar 

  • Peusner L (1974) Concepts in bioenergetics Prentice Hall Inc, New Jersey

    Google Scholar 

  • Pollard TD, Earnshaw W (2002) Cell biology. Saunders Philadelphia, London, New York, St. Louis, Sydney, Toronto

    Google Scholar 

  • Rich P (2003) The cost of living. Nature 421:583–584

    Article  PubMed  CAS  Google Scholar 

  • Salway JG (2004) Metabolism at a glance. Blackwell Publishing Ltd

    Google Scholar 

  • Salway JG (2012) Medical Biochemistry at a Glance. Wiley-Blackwell

    Google Scholar 

  • Streyer L (1995) Biochemistry W.H. Freeman and Company

    Google Scholar 

  • Tease PJ, Levy O, Cost GJ, Gore J, Ptacin JL, Sherratt D, Bustamante C, Cozzarelli NR (2005) Sequence-directed DNA translocation by purified FtsK. Science 307:586–589

    Article  Google Scholar 

  • Thompson JJ (1969) An introduction to chemical energetics SI Edition Longmans, London

    Google Scholar 

  • Vicsek T (2012) Swarming microtubules. Nature 483:411–412

    Article  PubMed  CAS  Google Scholar 

  • Sumino Y, Nagai KH, Shitaka Y, Yoshikawa K, Chaté H, Oiwa K (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448–452

    Article  PubMed  CAS  Google Scholar 

  • Voet D, Voet JG (1995) Biochemistry Wiley, New York-Chichester-Brisbane-Singapore-Toronto

    Google Scholar 

  • Voet D, Voet JG, Pratt CW (1999) Fundamentals of Biochemistry Wiley New York-Chichester-Brisbane-Singapore-Toronto

    Google Scholar 

  • Williams PM, Fowler SB, Best RB, Toca-Herrera JL, Scott KA, Steward A, Clarke J (2003) Hidden complexity in the mechanical properties of titin. Nature 422:446–449

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gambin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233

    Article  PubMed  CAS  Google Scholar 

  • Zoladz JA, Duda K, Majerczak J (1998) Gas Exchange, blond acid-base balance and mechanical muszle efficiency during incremental levels of exertion in young healthy individuals. Pneumonol Alergol Pol 66(3–4):163–172

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Konieczny .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Konieczny, L., Roterman-Konieczna, I., Spólnik, P. (2014). Energy in Biology—Demand and Use. In: Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-01336-7_2

Download citation

Publish with us

Policies and ethics