Skip to main content

Feedback Linearization and Model Inversion of Nonlinear Systems

  • Chapter
  • First Online:
  • 3082 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 205))

Abstract

Nearly all real world engineering systems comprise some type of nonlinearity. For output trajectory tracking of systems with continuous nonlinearities feedback linearization and feedforward control based on exact model inversion are powerful modern control techniques. This chapter provides an introductional representation of feedback linearization and model inversion. The goal is to present this topic in sufficient depth to understand the application of these concepts to underactuated multibody systems in the later chapters. In the first part of this chapter some important analysis and basic principles for nonlinear control of single-input single-output systems are developed. In the second part, output trajectory tracking using inversion-based feedforward control is presented. The extension to multiple-input multiple-output systems is predominantly straightforward and is summarized afterwards.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ascher UM, Mattheij RMM, Russell RD (1995) Numerical solution of boundary value problems for ordinary differential equations. SIAM, Philadelphia

    Google Scholar 

  2. Baillieul J, Willems JC (eds) (1999) Mathematical control theory. Springer, New York

    Google Scholar 

  3. Brockett RW (1978) Feedback invarianta for nonlinear systems. In: Proceedings of the 7th IFAC world congress, Helsinki

    Google Scholar 

  4. Brockett RW, Millman RS, Sussmann HJ (eds) (1982) Differential geometric control theory. Birkäuser, Boston

    Google Scholar 

  5. Brogan WL (1991) Modern control theory, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  6. Burns K, Gidea M (2005) Differential geometry and topology. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  7. Byrnes CI, Isidori A (1985) A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control. In: Proceedings of the 23rd IEEE conference on decision and control, vol 23, pp 1569–1573

    Google Scholar 

  8. Byrnes CI, Isidori A (1991) Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans Autom Control 36:1122–1137

    Article  MathSciNet  MATH  Google Scholar 

  9. Campion G, Bastin G, D’Andréa-Novel B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robot Autom 12(1):47–62

    Article  Google Scholar 

  10. Charlet B, Lévine J, Marino R (1988) Two sufficient conditions for dynamic feedback linearization of nonlinear systems. Lecture notes in control and information sciences. In: Bensoussan A, Lions JL (eds) Analysis and optimization of systems. Springer, Berlin

    Google Scholar 

  11. Charlet B, Lévine J, Marino R (1989) On dynamic feedback linearization. Syst Control Lett 13:143–151

    Article  MATH  Google Scholar 

  12. Charlet B, Lévine J, Marino R (1991) Sufficient conditions for dynamic state feedback linearization. SIAM J. Control Optim 29:38–57

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen D, Paden B (1996) Stable inversion of nonlinear non-miniumum systems. Int J Control 64(1):81–97

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiasson J (1998) A new approach to dynamic feedback linearization control of an induction motor. IEEE Trans Autom Control 43(3):391–397

    Article  MathSciNet  MATH  Google Scholar 

  15. De Luca A, Ulivi G (1988) Dynamic decoupling of voltage frequency controlled induction motors, Lecture notes in control and information sciences. In: Bensoussan A, Lions JL (eds) Analysis and Optimization of Systems. Springer, Berlin

    Google Scholar 

  16. Delaleau E, Rudolph J (1998) Control of flat systems by quasi-static feedback of generalized states. Int J Control 71(5):745–765

    Article  MathSciNet  MATH  Google Scholar 

  17. Descusse J, Moog CH (1985) Decoupling with dynamic compensation for strong invertible affine non-linear systems. Int J Control 42(6):1387–1398

    Article  MathSciNet  MATH  Google Scholar 

  18. Devasia S (1999) Approximated stable inversion for nonlinear systems with nonhyperbolic internal dynamics. IEEE Trans Autom Control 44(7):1419–1425

    Article  MathSciNet  MATH  Google Scholar 

  19. Devasia S, Paden B (1998) Stable inversion for nonlinear nonminimum-phase time-varying systems. IEEE Trans Autom Contol 43(2):283–288

    Article  MathSciNet  MATH  Google Scholar 

  20. Devasia S, Chen D, Paden B (1996) Nonlinear inversion-based output tracking. IEEE Trans Autom Control 41(7):930–942

    Article  MathSciNet  MATH  Google Scholar 

  21. Ergueta E, Sanchez R, Horowitz R, Tomizuka M (2007) Full sheet control through the use of steer-able nips. In: Proceedings of the 2007 ASME international mechanical engineering congress and exposition, ASME, Seattle, IMECE2007-41279

    Google Scholar 

  22. Ergueta E, Seifried R, Horowitz R, Tomizuka M (2008) Extended Luenberger observer for a MIMO nonlinear nonholonomic system. In: Proceedings of the 17th IFAC world congress, pp 9620–9265

    Google Scholar 

  23. Ergueta E, Sanchez R, Horowitz R, Tomizuka M (2010) Convergence analysis of a steerable nip mechanism for full sheet control in printing devices. J Dyn Syst Meas Control 132:011008-1-8

    Google Scholar 

  24. Ergueta E, Seifried R, Horowitz R (2011) A robust approach to dynamic feedback linearization for a steerable nips mechanism. J Dyn Syst Meas Control 133:021007-1-10

    Google Scholar 

  25. Fliess M, Hazewinkel M (eds) (1986) Algebraic and geometric methods in nonlinear control theory. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  26. Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of nonlinear systems: introductory theory and examples. Int J Control 61(6):1327–1361

    Article  MATH  Google Scholar 

  27. Fliess M, Lévine J, Martin P, Rouchon P (1999) A Lie-Bäcklund approach to equivilence and flatness of nonlinear systems. IEEE Trans Autom Control 44(5):922–937

    Article  MATH  Google Scholar 

  28. Graichen K (2006) Feedforward control design for finite-time transition problems of nonlinear systems with input and output constraints. Universität Stuttgart, Shaker Verlag, Aachen, Berichte aus dem Institut für Systemdynamik

    Google Scholar 

  29. Graichen K, Zeitz M (2005) Feedforward control design for nonlinear systems under input constraints. In: Meurer T, Graichen K, Gilles ED (eds) Control and observer design for nonlinear finite and infinite dimensional systems. Lecture notes in control and information sciences, Springer, Berlin, vol 322, pp 235–252

    Google Scholar 

  30. Graichen K, Hagenmeyer V, Zeitz M (2005) A new approach to inversion-based feedforward control design for nonlinear systems. Automatica 41:2033–2041

    Article  MathSciNet  MATH  Google Scholar 

  31. Graichen K, Treuer M, Zeitz M (2007) Swing-up of the double pendulum on a cart by feedforward and feedback control with experimental validation. Automatica 43:63–71

    Article  MathSciNet  MATH  Google Scholar 

  32. Hagenmeyer V, Delaleau E (2003) Exact feedforward linearisation based on differential flatness: the SISO case. In: Zinober A, Owens D (eds) Nonlinear and adaptive control. Lecture notes in control and information sciences, vol 281, Springer, London, pp 161–170

    Google Scholar 

  33. Hagenmeyer V, Zeitz M (2004) Flachheitsbasierter Entwurf von linearen und nichtlinearen Vorsteuerungen. Automatisierungstechnik 52:3–12

    Article  MathSciNet  Google Scholar 

  34. Hauser J, Sastry S, Meyer G (1992) Nonlinear control design for slightly non-minimum phase systems: application to v/stol aircraft. Automatica 28(4):665–679

    Article  MathSciNet  MATH  Google Scholar 

  35. Hauser JE (1989) Approximate tracking for nonlinear systems with application to flight control. Ph.D. thesis, University of California, Berkeley

    Google Scholar 

  36. Hermann R, Krener AJ (1977) Nonlinear controllability and observability. IEEE Trans Autom Control 22(5):728–740

    Article  MathSciNet  MATH  Google Scholar 

  37. Hirschorn RM (1979a) Invertibility of multivariable nonlinear control systems. IEEE Trans Autom Control 24(6):855–865

    Article  MathSciNet  MATH  Google Scholar 

  38. Hirschorn RM (1979b) Invertibility of nonlinear control systems. SIAM J Control Optim 17(2):289–297

    Article  MathSciNet  MATH  Google Scholar 

  39. Horowitz I (1963) Synthesis of feedback systems. Academic Press, New York

    MATH  Google Scholar 

  40. Hunt L, Su R, Meyer G (1983) Global transformations of nonlinear systems. IEEE Trans Autom Control 28:24–31

    Article  MathSciNet  MATH  Google Scholar 

  41. Hunt LR, Meyer G (1997) Stable inversion of nonlinear systems. Automatica 33(8):1549–1554

    Article  MathSciNet  MATH  Google Scholar 

  42. Hunt LR, Ramakrishna V, Meyer G (1998) Stable inversion and parameter variations. Syst Control Lett 34:203–207

    Article  MathSciNet  MATH  Google Scholar 

  43. Isidori A (1986) Control of nonlinear systems via dynamic state-feedback. In: Fliess M, Hazewinkel M (eds) Algebraic and geometric methods in nonlinear control theory, D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  44. Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, London

    Book  MATH  Google Scholar 

  45. Isidori A, Krener A (1982) On feedback equivalence of nonlinear systems. Syst Control Lett 2:118–121

    Article  MATH  Google Scholar 

  46. Isidori A, Moog C (1988) On the nonlinear equivalent of the notion of transmission zeros. In: Modelling and adaptive control. Lecture notes in control and information sciences, vol 105, Springer, Berlin

    Google Scholar 

  47. Isidori A, Ruberti A (1984) On the synthesis of linear input-output responses for nonlinear systems. Syst Control Lett 4:17–22

    Article  MathSciNet  MATH  Google Scholar 

  48. Jakubczyk B, Respondek W (1980) On linearization of control systems. Bull de l’Academie Polonaise des Sci Serie des Sci Mathematiques 27:517–522

    MathSciNet  Google Scholar 

  49. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  50. Kierzenka J, Shampine L (2001) A BVP solver based on residual control and the matlab PSE. ACM Trans Math Softw 27(3):299–316

    Article  MathSciNet  MATH  Google Scholar 

  51. Kierzenka J, Shampine L (2008) A BVP solver that controls residual and error. J Numer Anal Ind Appl Math 3(1–2):27–41

    MathSciNet  MATH  Google Scholar 

  52. Krener AJ (1973) On the equivalence of control systems and the linearization of nonlinear systems. SIAM J Control Optim 11(4):670–676

    Article  MathSciNet  MATH  Google Scholar 

  53. Krener AJ (1999) Feedback linearization. In: Baillieul J, Willems JC (eds) Mathematical Control Theory. Springer, New York, pp 68–98

    Google Scholar 

  54. Lee JM (2002) Introduction Smooth Manifolds. Springer, Berlin

    MATH  Google Scholar 

  55. Marino R, Tomei P (1995) Nonlinear Control Design: Geometric, Adaptive, and Robust. Prentice Hall, London

    Google Scholar 

  56. Martin P, Murray R, Rouchon P (1997) Flat systems. In: Bastin G, Gevers M (eds) Plenary lectures and mini-courses, 4th European Control Conference ECC, Brussels, Belgium

    Google Scholar 

  57. Nijmeijer H, van der Schaft A (1990) Nonlinear dynamical control systems. Springer, Berlin

    Google Scholar 

  58. Olver PJ (1986) Applications of lie groups to differential equations. Springer, New York

    Book  MATH  Google Scholar 

  59. O’Neill B (2006) Elementary differential geometry, 2nd edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  60. Rothfuß R, Rudolph J, Zeitz M (1997) Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme. Automatisierungstechnik 45:517–525

    Google Scholar 

  61. Sanchez R (2006) Nonlinear control strategies for a steer-able nips mechanism. Ph.D. thesis, University of California, Berkeley

    Google Scholar 

  62. Sanchez R, Horowitz R, Tomizuka M (2004) Paper sheet control using steerable nips. In: Proceedings of the 2004 American control conference. Massachusetts, Boston, pp 482–487

    Google Scholar 

  63. Sanchez R, Ergueta E, Fine B, Horowitz R, Tomizuka M, Krucinski M (2006) A mechatronic approach to full sheet control using steer-able nips. In: Proceedings of the 4th IFAC-symposium on mechatronic systems, Springer, Heidelberg

    Google Scholar 

  64. Sastry S (1999) Nonlinear systems: analysis, stability and control. Interdisciplinary applied mathematics. Springer, New York

    Book  Google Scholar 

  65. Shampine LF, Kierzenka J, Reichelt MW (2000) Solving boundary value problems for ordinary differential equations in matlab with bvp4c. Technical Report, Mathworks Inc., http://www.mathworks.com/bvp_tutorial

  66. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  67. Stoer J, Bulirsch R (2002) Introduction to numerical analysis, texts in applied mathematics, 3rd edn. Springer, New York

    Google Scholar 

  68. Su R (1982) On the linear equivalents of nonlinear systems. Syst Control Lett 2:48–52

    Article  MATH  Google Scholar 

  69. Sussmann H (1987) A general theorem on local controllability. SIAM J Control Optim 25:158–194

    Article  MathSciNet  MATH  Google Scholar 

  70. Sussmann H, Jurdjevic V (1972) Controllability of nonlinear systems. J Differ Eqn 12:95–116

    Article  MathSciNet  MATH  Google Scholar 

  71. Svaricek F (2006) Nulldynamik linearer und nichtlinearer Systeme: Definition, Eigenschaften und Anwendungen. Automatisierungstechnik 54(7):310–322

    Google Scholar 

  72. Taylor D, Li S (2002) Stable inversion of continuous-time nonlinear systems by finite-difference methods. IEEE Trans Autom Control 47(3):537–542

    Article  MathSciNet  Google Scholar 

  73. Tomlin CJ, Sastry SS (1997) Bounded tracking for non-minimum phase nonlinear systems with fast zero dynamics. Int J Control 68(4):819–847

    Article  MathSciNet  MATH  Google Scholar 

  74. Wey T (2002) Nichtlineare Regelungssysteme - Ein differentialalgebraischer Ansatz. Teubner

    Google Scholar 

  75. Yun X, Sarkar N (1996) Dynamic feedback control of vehicles with two steerable wheels. In: Proceedings of the IEEE international conference on robotics and automation, pp 3105–3110

    Google Scholar 

  76. Zou Q, Devasia S (2004) Preview-based inversion of nonlinear nonminium-phase systems: VTOL example. In: Proceedings of the 43rd IEEE conference on decision and control, December 14–17, 2004, Atlantis, Paradise Island, Bahamas, pp 4350–4356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seifried .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seifried, R. (2014). Feedback Linearization and Model Inversion of Nonlinear Systems. In: Dynamics of Underactuated Multibody Systems. Solid Mechanics and Its Applications, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-01228-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01228-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01227-8

  • Online ISBN: 978-3-319-01228-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics