Skip to main content

Experimental and Theoretical Methods

  • Chapter
  • First Online:
Book cover Charge Dynamics in 122 Iron-Based Superconductors

Part of the book series: Springer Theses ((Springer Theses))

  • 611 Accesses

Abstract

Optical spectroscopy is one of the oldest techniques in condensed-matter research, starting from the earliest observations of interference fringes in the intensity of light scattered from thin films, dating back to Newton, to taking into account the relative phases of two independent polarizations of light, carried out in the work of Drude.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

In theory, there is no difference between theory and practice. In practice, there is.

—Jan L. A. van de Snepscheut

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A small contamination from the \(z\) component of the dielectric tensor is always present due to an inevitable deviation of the angle of incidence from the normal to the sample surface arising from the simple practical limitation that the incident and reflected light must be spatially separated to enable the analysis of the latter.

  2. 2.

    This is, strictly speaking, only true when the unity contribution to the real part of the dielectric function has been subtracted, that is \(\varepsilon (\omega )-1\) is a response function. See below for the definition of the dielectric function in terms of the charge susceptibility, which is a true response function.

References

  1. Mahan, G. D. (2000). Many particle physics. Berlin: Springer.

    Google Scholar 

  2. Tompkins, H. G., & Irene, E. A. (2005). Handbook of ellipsometry. Norwich: William Andrew Inc.

    Google Scholar 

  3. Wagner, W., Riethmann, T., Feistel, R., & Harvey, A. H. (2011). New equations for the sublimation pressure and melting pressure of \({\rm {H}}_2{\rm {O}}\) ice Ih. Journal of Physical and Chemical Reference Data, 40, 043103.

    Google Scholar 

  4. Feistel, R., & Wagner, W. (2007). Sublimation pressure and sublimation enthalpy of \({\rm {H}}_2{\rm {O}}\) ice Ih between 0 and 273.16 K. Geochimica et Cosmochimica Acta, 71, 36–45.

    Google Scholar 

  5. Jackson, J. D. (1998). Classical electrodynamics. New York: Wiley.

    Google Scholar 

  6. Jakopic, G., & Papousek, W. (2000). Unified analytical inversion of reflectometric and ellipsometric data of absorbing media. Applied Optics, 39, 2727.

    Google Scholar 

  7. Kawata, S., & Inouye, Y. (1995). Scanning probe optical microscopy using a metallic probe tip. Ultramicroscopy, 57, 313–317.

    Article  Google Scholar 

  8. Keilmann, F., & Hillenbrand, R. (2008). Nano-optics and near-field optical microscopy. London: Artech House.

    Google Scholar 

  9. Huth, F., Schnell, M., Wittborn, J., Ocelic, N., & Hillenbrand, R. (2011). Infrared-spectroscopic nanoimaging with a thermal source. Nature Mater, 10, 352–356.

    Google Scholar 

  10. Cvitkovic, A., Ocelic, N. & Hillenbrand, R. (2007). Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Optics Express, 15, 8550–8565.

    Google Scholar 

  11. Sonier, J. E. (2001). \(\mu \)SR brochure. Retrieved from http://muon.neutron-eu.net/muon/files/musrbrochure.pdf

  12. Yaouanc, A., & de Réotier, P. D. (2011). Muon spin rotation, relaxation, and resonance: Applications to condensed matter. Oxford: Oxford University Press.

    Google Scholar 

  13. Tinkham, M. (1995). Introduction to superconductivity. New York: McGraw-Hill.

    Google Scholar 

  14. Sonier, J. E., Brewer, J. H., & Kiefl, R. F. (2000). \(\mu \)SR studies of the vortex state in type-II superconductors. Reviews of Modern Physics, 72, 769–811.

    Google Scholar 

  15. Niedermayer, Ch., Forgan, E. M., Glückler, H., Hofer, A., Morenzoni, E., Pleines, M., et al. (1999). Direct observation of a flux line lattice field distribution across an \({\rm {YBa}}_2{\rm {Cu}}_3{\rm {O}}_{7-\delta }\) surface by low energy muons. Physical Review Letters, 83, 3932.

    Article  ADS  Google Scholar 

  16. Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics. Fort Worth: Cengage Learning EMEA.

    Google Scholar 

  17. Drude, P. (1900). Zur Elektronentheorie der Metalle. Annals of Physics, 306, 566–613.

    Google Scholar 

  18. Drude, P. (1900). Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Annals of Physics, 308, 369–402.

    Google Scholar 

  19. Glover, R. E., & Tinkham, M. (1956). Transmission of superconducting films at millimeter-microwave and far infrared frequencies. Physical Review, 104, 844–845.

    Google Scholar 

  20. Hirsch, J. (1992). Apparent violation of the conductivity sum rule in certain superconductors. Physica C, 199, 305–310.

    Google Scholar 

  21. Hirsch, J. E., & Marsiglio, F. (2000). Optical sum rule violation, superfluid weight, and condensation energy in the cuprates. Physical Review B, 62, 15131–15150.

    Google Scholar 

  22. Charnukha, A., Dolgov, O. V., Golubov, A. A., Matiks, Y., Sun, D. L., Lin, C. T., et al. (2011). Eliashberg approach to infrared anomalies induced by the superconducting state of \({\rm {Ba}}_{0.68}{\rm {K}}_{0.32}{\rm {Fe}}_2{\rm {As}}_2\) single crystals. Physical Review B, 84, 174511.

    Article  ADS  Google Scholar 

  23. Gor’kov, L. P. (1958). On the energy spectrum of superconductors. Soviet Physics—JETP, 7, 505.

    Google Scholar 

  24. Migdal, A. B. (1958). Interaction between electrons and lattice vibrations in a normal metal. Soviet Physics—JETP, 7, 996.

    Google Scholar 

  25. Eliashberg, G. (1960). Interactions between electrons and lattice vibrations in a superconductor. Soviet Physics—JETP, 11, 696.

    Google Scholar 

  26. Grimvall, G. (1981). The electron-phonon interaction in metals. New York: E. P. Wohlfarth.

    Google Scholar 

  27. Carbotte, J. P. (1990). Properties of boson-exchange superconductors. Reviews of Modern Physics, 62, 1027–1157.

    Google Scholar 

  28. Nam, S. B. (1967). Theory of electromagnetic properties of superconducting and normal systems. I. Physical Review, 156, 470.

    Google Scholar 

  29. Nam, S. B. (1967). Theory of electromagnetic properties of strong-coupling and impure superconductors. II. Physics Review, 156, 487.

    Google Scholar 

  30. Suhl, H., Matthias, B. T., & Walker, L. R. (1959). Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Physical Review Letters, 3, 552–554.

    Google Scholar 

  31. Dolgov, O. V., Mazin, I. I., Parker, D., & Golubov, A. A. (2009). Interband superconductivity: Contrasts between Bardeen-Cooper-Schrieffer and Eliashberg theories. Physical Review B, 79, 060502.

    Google Scholar 

  32. Mattis, D. C., & Bardeen, J. (1958). Theory of the anomalous skin effect in normal and superconducting metals. Physical Review, 111, 412–417.

    Google Scholar 

  33. Popovich, P., Boris, A. V., Dolgov, O. V., Golubov, A. A., Sun, D. L., Lin, C. T., et al. (2010). Specific heat measurements of \({\rm {Ba}}_{0.68}{\rm {K}}_{0.32}{\rm {Fe}}_2{\rm {As}}_2\) single crystals: evidence for a multiband strong-coupling superconducting state. Physical Review Letters, 105, 027003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliaksei Charnukha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charnukha, A. (2014). Experimental and Theoretical Methods. In: Charge Dynamics in 122 Iron-Based Superconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01192-9_3

Download citation

Publish with us

Policies and ethics