Skip to main content

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

  • 1389 Accesses

Abstract

In this chapter, we present three new applications that we realized using our new data structures from the previous chapters. First, we adopted our sphere packings to define a new volume preserving deformation scheme, the sphere-spring system, that extends the classical mass-spring systems. Second, we show an application of our Inner Sphere Trees to real-time obstacle avoidance in dynamic environments for autonomous robots. Finally, we present the results of a comprehensive user study that evaluates the influence of the degrees of freedom on the users performance in complex bi-manual haptic interaction tasks.

Parts of this work have been previously published in [6163].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, I., Haber, J., & Seidel, H. P. (2003). Construction and animation of anatomically based human hand models. In Proc. of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 98–109).

    Google Scholar 

  2. Attar, F. T., Patel, R. V., & Moallem, M. (2005). Hived: a passive system for haptic interaction and visualization of elastic deformations. In World haptics conference (pp. 529–530). doi:10.1109/WHC.2005.75.

    Google Scholar 

  3. Bascetta, L., Magnani, G., Rocco, P., Migliorini, R., & Pelagatti, M. (2010). Anti-collision systems for robotic applications based on laser time-of-flight sensors. In 2010 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), July (pp. 278–284). doi:10.1109/AIM.2010.5695851.

    Chapter  Google Scholar 

  4. Basdogan, C., Ho, C.-H., Srinivasan, M. A., & Slater, M. (2000). An experimental study on the role of touch in shared virtual environments. ACM Transactions on Computer-Human Interaction, 7, 443–460. doi:10.1145/365058.365082. URL http://doi.acm.org/10.1145/365058.365082.

    Article  Google Scholar 

  5. Becker, M., Ihmsen, M., & Teschner, M. (2009). Corotated sph for deformable solids. In E. Galin & J. Schneider (Eds.), NPH (pp. 27–34). Aire-la-Ville: Eurographics Association. URL http://dblp.uni-trier.de/db/conf/nph/nph2009.html.

    Google Scholar 

  6. Benavidez, P., & Jamshidi, M. (2011). Mobile robot navigation and target tracking system. In IEEE international conference on system of systems engineering. doi:10.1109/SYSOSE.2011.5966614.

    Google Scholar 

  7. Bergeron, P., & Lachapelle, P. (1985). Controlling facial expression and body movements in the computer generated short “ ‘tony de peltrie’ ”. In SIGGRAPH 85 tutorial notes.

    Google Scholar 

  8. Bielser, D., Maiwald, V. A., & Gross, M. H. (1999). Interactive cuts through 3-dimensional soft tissue. Computer Graphics Forum, 18(3), 31–38.

    Article  Google Scholar 

  9. Biswas, J., & Veloso, M. M. (2012). Depth camera based indoor mobile robot localization and navigation. In ICRA (pp. 1697–1702).

    Google Scholar 

  10. Chen, D. T., & Zeltzer, D. (1992). Pump it up: computer animation based model of muscle using the finite element method. In Computer graphics (SIGGRAPH 92 conference proceedings) (Vol. 26, pp. 89–98). Reading: Addison Wesley.

    Google Scholar 

  11. Chen, Y., Zhu, Q. h., Kaufman, A. E., & Muraki, S. (1998). Physically-based animation of volumetric objects. In CA (pp. 154–160).

    Google Scholar 

  12. Clemente, L. A., Davison, A. J., Reid, I. D., Neira, J., & Tardos, J. D. (2007). Mapping large loops with a single hand-held camera. In W. Burgard, O. Brock, & C. Stachniss (Eds.), Robotics: science and systems. Cambridge: MIT Press. ISBN 978-0-262-52484-1.

    Google Scholar 

  13. Flacco, F., Kroger, T., De Luca, A., & Khatib, O. (2012). Depth space approach to human-robot collision avoidance. In ICRA (pp. 338–345). New York: IEEE. ISBN 978-1-4673-1403-9. URL http://dblp.uni-trier.de/db/conf/icra/icra2012.html.

    Chapter  Google Scholar 

  14. Garner, W. R. (1974). The processing of information and structure. Potomac: Lawrence Erlbaum Associates.

    Google Scholar 

  15. Haddadin, S., Albu-Schäffer, A., De Luca, A., & Hirzinger, G. (2008). Collision detection and reaction: a contribution to safe physical human-robot interaction. In IROS (pp. 3356–3363). New York: IEEE.

    Google Scholar 

  16. Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2012). RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. International Journal of Robotics Research, 31(5), 647–663.

    Article  Google Scholar 

  17. Hong, M., Jung, S., Choi, M.-H., & Welch, S. W. J. (2006). Fast volume preservation for a mass–spring system. IEEE Computer Graphics and Applications, 26, 83–91. doi:10.1109/MCG.2006.104. URL http://dl.acm.org/citation.cfm?id=1158812.1158873.

    Article  Google Scholar 

  18. Hu, H., & Gan, J. Q. (2005). Sensors and data fusion algorithms in mobile robotics.

    Google Scholar 

  19. Hunter, P. (2005). Fem/bem notes (Technical report). University of Oaklans, New Zealand.

    Google Scholar 

  20. Hutchins, M., Stevenson, D., Adcock, M., & Youngblood, P. (2005). Using collaborative haptics in remote surgical training. In Proc. first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (WHC 05) (pp. 481–482). Washington: IEEE Computer Society.

    Google Scholar 

  21. Jacob, R. J. K., Sibert, L. E., McFarlane, D. C., & Preston Mullen, M. Jr. (1994). Integrality and separability of input devices. ACM Transactions on Computer-Human Interaction, 1, 3–26. doi:10.1145/174630.174631. URL http://doi.acm.org/10.1145/174630.174631.

    Article  Google Scholar 

  22. Jaillet, F., Shariat, B., & Vandrope, D. (1998). Volume object modeling and animation with particle based system. In Proc. 8th ICECGDG (Vol. 1, pp. 215–219).

    Google Scholar 

  23. Jing, L., & Stephansson, O. (2007). Fundamentals of discrete element methods for rock engineering: theory and applications. Developments in geotechnical engineering. Amsterdam: Elsevier. ISBN 9780444829375. URL http://books.google.com/books?id=WS9bjQ0ORSEC.

    Google Scholar 

  24. Jung, Y., Yeh, S.-C., & Stewart, J. (2006). Tailoring virtual reality technology for stroke rehabilitation: a human factors design. In CHI ’06 extended abstracts on human factors in computing systems, CHI ’06 (pp. 929–934). New York: ACM. ISBN 1-59593-298-4. doi:10.1145/1125451.1125631. URL http://doi.acm.org/10.1145/1125451.1125631.

    Chapter  Google Scholar 

  25. Kaehler, K., Haber, J., & Seidel, H. P. (2001). Geometry-based muscle modeling for facial animation. In Proc. of graphics interface 2001 (pp. 37–46).

    Google Scholar 

  26. Keefe, D. F., Zeleznik, R. C., & Laidlaw, D. H. (2007). Drawing on air: input techniques for controlled 3D line illustration. IEEE Transactions on Visualization and Computer Graphics, 13(5), 1067–1081.

    Article  Google Scholar 

  27. Khoshelham, K., & Elberink, S. O. (2012). Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors, 12(2), 1437–1454. doi:10.3390/s120201437. URL http://www.mdpi.com/1424-8220/12/2/1437.

    Article  Google Scholar 

  28. Konolige, K., & Agrawal, M. (2008). Frameslam: from bundle adjustment to real-time visual mapping. IEEE Transactions on Robotics, 24(5), 1066–1077.

    Article  Google Scholar 

  29. Kry, P. G., James, D. L., & Pai, D. K. (2002). Eigenskin: real time large deformation character skinning in hardware. In Proc. ACM SIGGRAPH symposium on computer animation (pp. 153–159).

    Google Scholar 

  30. Kuhn, S., & Henrich, D. (2007). Fast vision-based minimum distance determination between known and unknown objects. In IEEE international conference on intelligent robots and systems, San Diego/USA.

    Google Scholar 

  31. Leganchuk, A., Zhai, S., & Buxton, W. (1998). Manual and cognitive benefits of two-handed input: an experimental study. ACM Transactions on Computer-Human Interaction, 5, 326–359. doi:10.1145/300520.300522. URL http://doi.acm.org/10.1145/300520.300522.

    Article  Google Scholar 

  32. Lewis, J. P., Cordner, M., & Fong, N. (2000). Pose space deformations: a unified approach to shape interpolation and skeleton-driven deformation. In SIGGRAPH 00 conference proceedings. Reading: Addison Wesley.

    Google Scholar 

  33. Low, T., & Wyeth, G. (2005). Obstacle detection using optical flow. In Proceedings of the 2005 Australasian conf. on robotics & automation.

    Google Scholar 

  34. Magnenant-Thalmann, N., Laperriere, R., & Thalmann, D. (1988). Jointdependent local deformations for hand animation and object grasping. In Proc. of graphics interface 88 (pp. 26–33).

    Google Scholar 

  35. Martinet, A., Casiez, G., & Grisoni, L. (2010). The effect of dof separation in 3d manipulation tasks with multi-touch displays. In Proceedings of the 17th ACM symposium on virtual reality software and technology, VRST ’10 (pp. 111–118). New York: ACM. ISBN 978-1-4503-0441-2. doi:10.1145/1889863.1889888. URL http://doi.acm.org/10.1145/1889863.1889888.

    Chapter  Google Scholar 

  36. May, S., Fuchs, S., Droeschel, D., Holz, D., & Nüchter, A. (2009). Robust 3d-mapping with time-of-flight cameras. In Proceedings of the 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS’09 (pp. 1673–1678). Piscataway: IEEE Press. ISBN 978-1-4244-3803-7. URL http://dl.acm.org/citation.cfm?id=1733343.1733640.

    Chapter  Google Scholar 

  37. Mezger, J., & Strasser, W. (2006). Interactive soft object simulation with quadratic finite elements. In Proc. AMDO conference.

    Google Scholar 

  38. Müller, M., & Chentanez, N. (2011). Solid simulation with oriented particles. In ACM SIGGRAPH 2011 papers, SIGGRAPH ’11 (pp. 92:1–92:10). New York: ACM. ISBN 978-1-4503-0943-1. doi:10.1145/1964921.1964987. URL http://doi.acm.org/10.1145/1964921.1964987.

    Google Scholar 

  39. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., & Cutler, B. (2002). Stable real-time deformations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’02 (pp. 49–54). New York: ACM. ISBN 1-58113-573-4. doi:10.1145/545261.545269. URL http://doi.acm.org/10.1145/545261.545269.

    Chapter  Google Scholar 

  40. Müller, M., Heidelberger, B., Teschner, M., & Gross, M. (2005). Meshless deformations based on shape matching. In ACM SIGGRAPH 2005 papers, SIGGRAPH ’05 (pp. 471–478). New York: ACM. doi:10.1145/1186822.1073216. URL http://doi.acm.org/10.1145/1186822.1073216.

    Chapter  Google Scholar 

  41. Munjiza, A. (2004). The combined finite-discrete element method. New York: Wiley. ISBN 9780470841990. URL http://books.google.co.in/books?id=lbznrSzqcRkC.

    Book  Google Scholar 

  42. Murayama, J., Bougrila, L., Akahane, Y. K., Hasegawa, S., Hirsbrunner, B., & Sato, M. (2004). Spidar g&g: a two-handed haptic interface for bimanual vr interaction. In Proceedings of EuroHaptics 2004 (pp. 138–146).

    Google Scholar 

  43. Nealen, A., Mueller, M., Keiser, R., Boxerman, E., & Carlson, M. (2006). Physically based deformable models in computer graphics. Computer Graphics Forum, 25(4), 809–836. doi:10.1111/j.1467-8659.2006.01000.x.

    Article  Google Scholar 

  44. Ohno, K., Nomura, T., & Tadokoro, S. (2006). Real-time robot trajectory estimation and 3d map construction using 3d camera. In IROS (pp. 5279–5285). New York: IEEE.

    Google Scholar 

  45. OpenNI (2010). OpenNI user guide. OpenNI organization, November. URL http://www.openni.org/documentation.

  46. OpenSG (2012). Opensg—a portable scenegraph system to create realtime graphics programs. URL http://www.opensg.org/.

  47. Prusak, A., Melnychuk, O., Roth, H., Schiller, I., & Koch, R. (2008). Pose estimation and map building with a time- of- flight- camera for robot navigation. International Journal of Intelligent Systems Technologies and Applications, 5(3/4), 355–364. doi:10.1504/IJISTA.2008.021298.

    Article  Google Scholar 

  48. Ravari, A. R. N., Taghirad, H. D., & Tamjidi, A. H. (2009). Vision-based fuzzy navigation of mobile robots in grassland environments. In IEEE/ASME international conference on advanced intelligent mechatronics, 2009. AIM 2009, July (pp. 1441–1446). doi:10.1109/AIM.2009.5229858.

    Chapter  Google Scholar 

  49. Rusu, R. B., & Cousins, S. (2011). 3d is here: point cloud library (pcl). In International conference on robotics and automation, Shanghai, China.

    Google Scholar 

  50. Schiavi, R., Bicchi, A., & Flacco, F. (2009). Integration of active and passive compliance control for safe human-robot coexistence. In Proceedings of the 2009 IEEE international conference on robotics and automation, ICRA’09 (pp. 2471–2475). Piscataway: IEEE Press. ISBN 978-1-4244-2788-8. URL http://dl.acm.org/citation.cfm?id=1703775.1703850.

    Google Scholar 

  51. Stylopoulos, N., & Rattner, D. (2003). Robotics and ergonomics. Surgical Clinics of North America, 83(6), 1321–1337. URL http://view.ncbi.nlm.nih.gov/pubmed/14712869.

    Article  Google Scholar 

  52. Sueda, S., Kaufman, A., & Pai, D. K. (2008). Musculotendon simulation for hand animation. ACM Transactions on Graphics, 27(3). URL http://doi.acm.org/10.1145/1360612.1360682.

  53. Swapp, D., Pawar, V., & Loscos, C. (2006). Interaction with co-located haptic feedback in virtual reality. Virtual Reality, 10, 24–30. doi:10.1007/s10055-006-0027-5.

    Article  Google Scholar 

  54. Tsetserukou, D. (2010). Haptihug: a novel haptic display for communication of hug over a distance. In EuroHaptics (1) (pp. 340–347).

    Google Scholar 

  55. Vassilev, T., & Spanlang, B. (2002). A mass–spring model for real time deformable solids. In East-west vision.

    Google Scholar 

  56. Veit, M., Capobianco, A., & Bechmann, D. (2008). Consequence of two-handed manipulation on speed, precision and perception on spatial input task in 3d modelling applications. Journal of Universal Computer Science, 14(19), 3174–3187. Special issue on human–computer interaction.

    Google Scholar 

  57. Veit, M., Capobianco, A., & Bechmann, D. (2009). Influence of degrees of freedom’s manipulation on performances during orientation tasks in virtual reality environments. In VRST 2009: the 16th ACM symposium on virtual reality and software technology, Kyoto (Japan), November.

    Google Scholar 

  58. Verner, L. N., & Okamura, A. M. (2009). Force & torque feedback vs force only feedback. In WHC ’09: proceedings of the world haptics 2009—third joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (pp. 406–410). Washington: IEEE Computer Society. ISBN 978-1-4244-3858-7. doi:10.1109/WHC.2009.4810880.

    Chapter  Google Scholar 

  59. Wang, S., & Srinivasan, M. A. (2003). The role of torque in haptic perception of object location in virtual environments. In HAPTICS ’03: proceedings of the 11th symposium on haptic interfaces for virtual environment and teleoperator systems (HAPTICS’03) (p. 302). Washington: IEEE Computer Society. ISBN 0-7695-1890-7.

    Chapter  Google Scholar 

  60. Weingarten, J. W., Gruener, G., & Siegwari, R. (2004). A state-of-the-art 3d sensor for robot navigation. In IEEE/RSJ int. conf. on intelligent robots and systems (pp. 2155–2160).

    Google Scholar 

  61. Weller, R., & Zachmann, G. (2009). Stable 6-DOF haptic rendering with inner sphere trees. In International design engineering technical conferences & computers and information in engineering conference (IDETC/CIE), August. San Diego: ASME. URL http://cg.in.tu-clausthal.de/research/ist. CIE/VES Best Paper Award.

    Google Scholar 

  62. Weller, R., & Zachmann, G. (2011). 3-dof vs. 6-dof—playful evaluation of complex haptic interactions. In IEEE international conference on consumer electronics (ICCE), 2011 digest of technical papers, January. Washington: IEEE Computer Society. URL http://cg.in.tu-clausthal.de/research/haptesha.

    Google Scholar 

  63. Weller, R., & Zachmann, G. (2012). User performance in complex bi-manual haptic manipulation with 3 dofs vs. 6 dofs. In Haptics symposium, Vancouver, Canada, March 4–7. URL http://cg.in.tu-clausthal.de/research/haptesha/index.shtml.

    Google Scholar 

  64. Yinka-Banjo, C., Osunmakinde, I., & Bagula, A. (2011). Collision avoidance in unstructured environments for autonomous robots: a behavioural modelling approach. In Proceedings of the IEEE 2011 international conference on control, robotics and cybernetics (ICCRC 2011), New Delhi, India, 20 March.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weller, R. (2013). Applications. In: New Geometric Data Structures for Collision Detection and Haptics. Springer Series on Touch and Haptic Systems. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01020-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01020-5_7

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01019-9

  • Online ISBN: 978-3-319-01020-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics