Skip to main content

A Novel Method for Quantifying Soil Hydraulic Properties

  • Chapter
  • First Online:

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

A knowledge of soil hydraulic properties—the water retention curve and unsaturated hydraulic conductivity—is required for soil water modelling and for various studies of soil hydrology. Taking measurements using traditional techniques is time consuming, the equipment is costly and the results can be uncertain. The evaporation method is frequently used for the simultaneous determination of hydraulic functions of unsaturated soil samples, i.e. the water retention curve and hydraulic conductivity function. Due to the limited range of common tensiometers, all the methodological variations of the evaporation method suffer from the limitation that the hydraulic functions can only be determined to a maximum of 70 kPa. The extended evaporation method (EEM) overcomes this restriction. Using new cavitation tensiometers and setting the air-entry pressure of the tensiometer’s porous ceramic cup as a final tension value allow both hydraulic functions to be quantified close to the wilting point. Additionally, soil shrinkage dynamics as well as soil water hysteresis can be quantified. Here, the HYPROP system was selected, a commercial device with vertically aligned tensiometers optimised to perform evaporation measurements. The HYPROP software was developed for recording, calculating, evaluating, fitting and exporting hydrological data. A good match between the results of soil hydraulic functions was shown when those obtained from traditional methods and the extended evaporation method were compared. Systematic deviations were not found.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arya LM (2002) Wind and hot air method. In: Dane JH, Topp EC (eds) Methods of soil analysis part 4: physical methods, SSSA Book Ser. 5, SSSA, Madison, WI, pp 916–926

    Google Scholar 

  • Becher HH (1970) Ein Verfahren zur Messung der ungesättigten Wasserleitfähigkeit. Z. Pflanzenern. Bodenkd. 128(1):1–12

    Article  Google Scholar 

  • Bertuzzi P, Mohrath D, Bruckler L, Gaudu JC, Bourlet M (1999). Wind’s evaporation method: experimental equipment and error analysis. In: van Genuchten MTh, Leij FJ, Wu L (eds) Proceedings of international workshop on characterization and measurement of the hydraulic properties of unsaturated porous media, 22–24 Oct 1997, University of California, Riverside, CA, pp 323–328

    Google Scholar 

  • Boels D, van Gils JBHM, Veerman GJ, Wit KE (1978) Theory and system of automatic determination of soil moisture characteristics and unsaturated hydraulic conductivities. Soil Sci 126:191–199

    Article  Google Scholar 

  • Cresswell HP, Green TW, McKenzie NJ (2008) The adequacy of pressure plate apparatus for determining soil water retention. Soil Sci Soc Am J 55(72):41–49

    Article  Google Scholar 

  • Dane JH, Hopmans JW (2002) Pressure plate extractor. In: Dane JH, Topp EC (eds) Methods of soil analysis part 4: physical methods, SSSA Book Ser. 5, SSSA, Madison, WI, pp 688–690

    Google Scholar 

  • Durner W, Iden S (2011) Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation. Water Resour Res 47:W08526. doi:10.1029/2011WR010632

    Article  Google Scholar 

  • Durner W, Or D (2005) Chapter 73: soil water potential measurement. In: Anderson MG, McDonnell JJ (eds) Encyclopedia of hydrological sciences, Chapter 73, Wiley, London, pp 1089–1102

    Google Scholar 

  • Fujimaki H, Mitsuhiro I (2003) Reevaluation of the multistep outflow method for determining unsaturated hydraulic conductivity. Vadose Zone J 2:409–415

    Google Scholar 

  • Halbertsma J (1996) Wind’s evaporation method, determination of the water retention characteristics and unsaturated hydraulic conductivity of soil samples Possibilities, advantages and disadvantages. In: Durner W, Halbertsma J, Cislerova M (eds) European workshop on advanced methods to determine hydraulic properties of soils, Thurnau, Germany, 10–12 June 1996, Department of Hydrology, University of Bayreuth, pp 55–58

    Google Scholar 

  • Henseler KL, Renger M (1969) Die Bestimmung der Wasserdurchlässigkeit im wasserungesättigten Boden mit der Doppelmembran-Druckapparatur. Z. Pflanzenernähr. Bodenkd. 122:220–228

    Article  Google Scholar 

  • Hopmans JW, Simunek J, Romano N, Durner W (2002) Inverse methods. In: Dane JH, Topp EC (eds) Methods of soil analysis part 4: physical methods, SSSA Book Ser. 5, SSSA, Madison, WI, pp 763–1008

    Google Scholar 

  • HYPROP-Fit software (2012) (http://www.ums-muc.de)

  • Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods, 687–734. In: Klute A (ed) Methods of soil analysis. Part 1, 2nd edn, Agron. Monogr. 9. ASA and SSSA, Madison, WI

    Google Scholar 

  • Kool B, Parker JC, van Genuchten MTh (1985) Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: I. Theory and numerical studies. Soil Sci Soc Am J 49:1348–1354

    Article  Google Scholar 

  • UMS GmbH Munich (2012) HYPROP©—Laboratory evaporation method for the determination of pF-curves and unsaturated conductivity, Online: http://www.ums-muc.de/en/products/soil_laboratory.html

  • Nimmo JR, Perkins KS, Lewis AM (2002) Steady-state centrifuge, 903–916. In: Dane JH, Topp GC (ed) Methods of soil analysis. Part 4. Physical methods. SSSA Book Ser. 5. SSSA, Madison, WI

    Google Scholar 

  • Plagge R (1991) Bestimmung der ungesättigten hydraulischen Leitfähigkeit im Boden PhD Thesis. Technical University Berlin, Institute of Ecology, Department of Soil Science, p 152

    Google Scholar 

  • Reynolds WD, Elrick DE (1991) Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci Soc Am J 55:633–639

    Article  Google Scholar 

  • Schindler U (1980) Ein Schnellverfahren zur Messung der Wasserleitfähigkeit im teilgesättigten Boden an Stechzylinderproben Arch. Acker- u. Pflanzenbau u. Bodenkd, Berlin 24, 1, 1–7

    Google Scholar 

  • Schindler U, Mueller L (2006) Simplifying the evaporation method for quantifying soil hydraulic properties. J Plant Nutr Soil Sci 169(5):169623–169629

    Article  Google Scholar 

  • Schindler U, von Durner W, Unold G, Mueller L (2010a) Evaporation method for measuring unsaturated hydraulic properties of soils: extending the range. Soil Sci Soc Am J 74:1071–1083

    Article  Google Scholar 

  • Schindler U, Durner W, von Unold G, Mueller L, Wieland R (2010b) The evaporation method—extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J Plant Nutr Soil Sci 173:563–572

    Article  Google Scholar 

  • Šimůnek J, Šejna M, van Genuchten MTh (1999) The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 2.0. U.S. Salinity Laboratory, Riverside, California

    Google Scholar 

  • TensioVIEW Software (2012) http://www.ums-muc.de

  • Tyner JS, Arya LM, Wright WC (2006) The dual gravimetric hot-air method for measuring soil water diffusivity. Vadose Zone J 5:1281–1286

    Article  Google Scholar 

  • Wendroth O, Ehlers W, Hopmans JW, Klage H, Halbertsma J, Woesten JHM (1993) Reevaluation of the evaporation method for determining hydraulic functions in unsaturated soils. Soil Sci Soc Am J 57:1436–1443

    Article  Google Scholar 

  • Wind GP (1966) Capillary conductivity data estimated by a simple method. In: Proceedings of UNESCO/IASH Symp. Water in the unsaturated zone Wageningen, the Netherlands, pp 181–191

    Google Scholar 

  • Young MH, Sisson JB (2002) Tensiometry. In: Dane JH, Topp EC (eds) Methods of soil analysis part 4: physical methods. SSSA Book Ser. 5, SSSA, Madison, WI, pp 575–608

    Google Scholar 

Download references

Acknowledgments

Author thanks the HYPROP developer group of the UMS GmbH Munich (Dipl. Ing. Georg von Unold, Dipl. Ing. Thomas Pertasek, Dipl. Ing. Andreas Steins), Prof. Dr. Wolfgang Durner (TU Braunschweig), and Dr. Andre Peters (TU Berlin) for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Schindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schindler, U. (2014). A Novel Method for Quantifying Soil Hydraulic Properties. In: Mueller, L., Saparov, A., Lischeid, G. (eds) Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-01017-5_7

Download citation

Publish with us

Policies and ethics