Skip to main content

Nasal Dry Powder Vaccine Delivery Technology

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

Nasal delivery of vaccines occurred over a millennium ago in China, where ground scabs from small pox lesions, presumably containing live virus, were sniffed. This practice was the basis for early vaccination with live virus in Europe in the eighteenth century. In the past decade, a number of reports have focused on new antigens, adjuvants, and delivery systems, but few approaches have entered development as a clinical candidate. This chapter outlines the critical steps needed to create a comprehensive integrated strategy adopting an antigen, with candidate physical and biochemical adjuvants, in a delivery system. There is a need to define unique formulation and device performance properties, evaluate dose sparing achieved through novel construction and adjuvancy, and develop rapid screening methods to identify toxic formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hickey, A.J., Garmise, R.J.: Dry powder nasal vaccines as an alternative to needle-based delivery. Crit. Rev. Ther. Drug. Carrier. Syst. 26, 1–27 (2009)

    Article  PubMed  Google Scholar 

  2. Garmise, R.J., Staats, H.F., Hickey, A.J.: Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech 8, E81 (2007)

    Article  PubMed  Google Scholar 

  3. Hickey, A.J., Swift, D.: Aerosol measurement, principles, techniques and applications, 3rd edn, pp. 805–820. Wiley, Oxford (2011)

    Book  Google Scholar 

  4. Garmise, R.J., et al.: Formulation of a dry powder influenza vaccine for nasal delivery. AAPS PharmSciTech 7, E19 (2006)

    Article  PubMed  Google Scholar 

  5. Alcomo, I.E.: Fundamentals of microbiology, pp. 263–266. Jones and Bartlett Publishers, Sudbury, Mass (2001)

    Google Scholar 

  6. Krasner, R.I.: Biological weapons, the microbial challenge, pp. 335–360. ASM Press, Washington, D.C (2002)

    Google Scholar 

  7. Federal Bureau of Investigation, Famous Cases & Criminals: Amerithrax or Anthrax Investigation. www.fbi.gov/about-us/history/famous-cases/anthrax-amerithrax (2011)

  8. AHFS-DI, ‘Anthrax Vaccine Adsorbed’, in Bioterrorism Resource Manual, American Society of Health-System Pharmacists, Bethesda, MD, 360–377 (2002)

    Google Scholar 

  9. Mantis, N. J., Morici, L. A., Roy, C. J: Mucosal vaccines for biodefense: critical factors in manufacture and delivery, pp. 181–195. Springer New York (2012)

    Google Scholar 

  10. Csaba, N., Garcia-Fuentes, M., Alonso, M.J.: Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev. 61, 140–157 (2008)

    Article  PubMed  Google Scholar 

  11. Koping-Hoggard, M., Sanchez, A., Alonso, M.J.: Nanoparticles as carriers for nasal vaccine delivery. Expert Rev. Vaccines 4, 185–196 (2005)

    Article  PubMed  Google Scholar 

  12. Espueles, S., Gamazo, C., Blanco-Prieto, M.J., Irache, J.M.: Nanoparticles as adjuvant-vectors for vaccination, pp. 317–325. Informa Healthcare, New York (2007)

    Google Scholar 

  13. Voltaire, F.M.A.: Philosophical letters. Dover, Mineola (2003)

    Google Scholar 

  14. El-Kamary, S.S., et al.: Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J. Infect. Dis. 202, 1649–1658 (2010)

    Article  PubMed  CAS  Google Scholar 

  15. Administration, U. S. F. a. D.: Efficacy Testing and Surrogate Markers of Immunity Workshop Vol. http://www.fda.gov/downloads/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/TranscriptsMinutes/UCM054606.pdf. Center for Biologics Research and Evaluation (2002)

  16. Sewall, H.: The role of epithelium in experimental immunization. Science 62, 293–299 (1925)

    Article  PubMed  CAS  Google Scholar 

  17. Wang, S.H., Kirwan, S.M., Abraham, S.N., Staats, H.F., Hickey, A.J.: Stable dry powder formulation for nasal delivery of anthrax vaccine. J. Pharm. Sci. 101, 31–47 (2011). doi:10.1002/jps.22742

    PubMed  Google Scholar 

  18. Jain, S., O’Hagan, D.T., Singh, M.: The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev. Vaccines 10, 1731–1742 (2011)

    Article  PubMed  CAS  Google Scholar 

  19. Jacques, P., et al.: The immunogenicity and reactogenicity profile of a candidate hepatitis B vaccine in an adult vaccine non-responder population. Vaccine 20, 3644–3649 (2002)

    Article  PubMed  CAS  Google Scholar 

  20. Keitel, W., et al.: Dose ranging of adjuvant and antigen in a cell culture H5N1 influenza vaccine: safety and immunogenicity of a phase 1/2 clinical trial. Vaccine 28, 840–848 (2010). doi:10.1016/j.vaccine.2009.10.019

    Article  PubMed  CAS  Google Scholar 

  21. Nevens, F., et al.: Immunogenicity and safety of an experimental adjuvanted hepatitis B candidate vaccine in liver transplant patients. Liver Transpl. 12, 1489–1495 (2006)

    Article  PubMed  Google Scholar 

  22. Soloff, A.C., Barratt-Boyes, S.M.: Enemy at the gates: dendritic cells and immunity to mucosal pathogens. Cell Res. 20, 872–885 (2010). doi:10.1038/cr.2010.94

    Article  PubMed  CAS  Google Scholar 

  23. Levitz, S.M., Golenbock, D.T.: Beyond empiricism: informing vaccine development through innate immunity research. Cell 148, 1284–1292 (2012). doi:10.1016/j.cell.2012.02.012

    Article  PubMed  CAS  Google Scholar 

  24. Lycke, N.: Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12, 592–605 (2012). doi:10.1038/nri3251

    Article  PubMed  CAS  Google Scholar 

  25. Nochi, T., et al.: Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater. 9, 572–578 (2010). doi:10.1038/nmat2784

    Article  PubMed  CAS  Google Scholar 

  26. Stanberry, L.R., et al.: Safety and immunogenicity of a novel nanoemulsion mucosal adjuvant W805EC combined with approved seasonal influenza antigens. Vaccine 30, 307–316 (2012). doi:10.1016/j.vaccine.2011.10.094

    Article  PubMed  CAS  Google Scholar 

  27. Makidon, P.E., et al.: Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking. Eur. J. Immunol. 42, 2073–2086 (2012). doi:10.1002/eji.201142346

    Article  PubMed  CAS  Google Scholar 

  28. Bielinska, A.U., et al.: Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect. Immun. 75, 4020–4029 (2007). doi:10.1128/iai.00070-07

    Article  PubMed  CAS  Google Scholar 

  29. Amorij, J.P., et al.: Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine 25, 8707–8717 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. Gwinn, W.M., et al.: Effective induction of protective systemic immunity with nasally administered vaccines adjuvanted with IL-1. Vaccine 28, 6901–6914 (2010). doi:10.1016/j.vaccine.2010.08.006

    Article  PubMed  CAS  Google Scholar 

  31. Jaganathan, K.S., Vyas, S.P.: Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine 24, 4201–4211 (2006)

    Article  PubMed  CAS  Google Scholar 

  32. Thompson, A.L., et al.: Maximal adjuvant activity of nasally delivered IL-1alpha requires adjuvant-responsive CD11c(+) cells and does not correlate with adjuvant-induced in vivo cytokine production. J. Immunol. 188, 2834–2846 (2012). doi:10.4049/jimmunol.1100254

    Article  PubMed  CAS  Google Scholar 

  33. Thompson, A.L., Staats, H.F.: Cytokines: the future of intranasal vaccine adjuvants. Clin. Dev. Immunol. 2011, 289597 (2011). doi:10.1155/2011/289597

    Article  PubMed  Google Scholar 

  34. Couch, R.B., et al.: Contrasting effects of type I interferon as a mucosal adjuvant for influenza vaccine in mice and humans. Vaccine 27, 5344–5348 (2009). doi:10.1016/j.vaccine.2009.06.084. S0264-410X(09)00962-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  35. Duthie, M.S., Windish, H.P., Fox, C.B., Reed, S.G.: Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239, 178–196 (2011). doi:10.1111/j.1600-065X.2010.00978.x

    Article  PubMed  CAS  Google Scholar 

  36. Lewis, D.J., et al.: Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One 4, e6999 (2009). doi:10.1371/journal.pone.0006999

    Article  PubMed  Google Scholar 

  37. Mutsch, M., et al.: Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland.[see comment]. N. Engl. J. Med. 350, 896–903 (2004)

    Article  PubMed  CAS  Google Scholar 

  38. Atmar, R.L., et al.: Norovirus vaccine against experimental human Norwalk Virus illness. N. Engl. J. Med. 365, 2178–2187 (2011). doi:10.1056/NEJMoa1101245

    Article  PubMed  CAS  Google Scholar 

  39. Hayes, J.D., Pulford, D.J.: The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445–600 (1995). doi:10.3109/10409239509083491

    Article  PubMed  CAS  Google Scholar 

  40. Sayes, C.M., Reed, K.L., Warheit, D.B.: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97, 163–180 (2007). doi:10.1093/toxsci/kfm018

    Article  PubMed  CAS  Google Scholar 

  41. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002). doi:10.1016/s1360-1385(02)02312-9. Pii s1360-1385(02)02312-9

    Article  PubMed  CAS  Google Scholar 

  42. Warheit, D., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004)

    Article  PubMed  CAS  Google Scholar 

  43. Gurr, J.R., Wang, A.S.S., Chen, C.H., Jan, K.Y.: Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66–73 (2005). doi:10.1016/j.tox.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  44. Sayes, C.M., et al.: Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 92, 174–185 (2006). doi:10.1093/toxsci/kfj197

    Article  PubMed  CAS  Google Scholar 

  45. Zhu, S.Q., Oberdorster, E., Haasch, M.L.: Toxicity of an engineered nanoparticle (fullerene, C-60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res. 62, S5–S9 (2006). doi:10.1016/j.marenvres.2006.04.059

    Article  PubMed  CAS  Google Scholar 

  46. Pitt, M.L., et al.: In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine 19, 4768–4773 (2001)

    Article  PubMed  CAS  Google Scholar 

  47. Zaucha, G.M., Pitt, L.M., Estep, J., Ivins, B.E., Friedlander, A.M.: The pathology of experimental anthrax in rabbits exposed by inhalation and subcutaneous inoculation. Arch. Pathol. Lab. Med. 122, 982–992 (1998)

    PubMed  CAS  Google Scholar 

  48. Roy, C.J., et al.: Human leukocyte antigen-DQ8 transgenic mice: a model to examine the toxicity of aerosolized staphylococcal enterotoxin B. Infect. Immun. 73, 2452–2460 (2005)

    Article  PubMed  CAS  Google Scholar 

  49. LeClaire, R.D., et al.: Potentiation of inhaled staphylococcal enterotoxin B-induced toxicity by lipopolysaccharide in mice. Toxicol. Pathol. 24, 619–626 (1996)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hickey, A.J. et al. (2014). Nasal Dry Powder Vaccine Delivery Technology. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_18

Download citation

Publish with us

Policies and ethics