Skip to main content

Early Universe Cosmology

  • Chapter
  • First Online:
Book cover The B−L Phase Transition

Part of the book series: Springer Theses ((Springer Theses))

  • 620 Accesses

Abstract

The main intention of this thesis is to motivate and investigate the \(B\)\(L\) phase transition as the possible origin for the thermal phase of the hot early universe. Before we are ready to do so, we have to acquaint ourselves with the observational evidence for this phase and understand which physical processes have or may have taken place in it. For this reason we shall provide a brief review of early universe cosmology in this chapter, thereby compiling the background material for the further discussion. We will first discuss the present composition of the universe (cf. Sect. 2.1) and then some of the main events in the thermal history of the universe in reverse chronological order (cf. Sect. 2.2). We would like to emphasize that in this introductory chapter we will crudely restrict ourselves to aspects which are relevant for our purposes. More balanced and comprehensive presentations of the topic are for instance provided in standard textbooks [1–3] or dedicated review articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in the recent cosmic past, shortly after the onset of star formation, the entropy contained in black holes has come to dominate over the entropy in radiation [18].

  2. 2.

    In the following discussion we shall restrict ourselves to the relic abundance of primordial neutrinos. If neutrinos are Dirac fermions, the abundance of antineutrinos should at each time be approximately the same as the abundance of neutrinos.

  3. 3.

    In order to ensure that the universe as a whole is electrically charge neutral, there has to be present one electron for each proton in the universe. As a single proton is, however, roughly \(1,\!800\) times heavier than an electron, the contribution from electrons to the total energy presently stored in matter is negligibly small, which is why we will not consider it any further.

  4. 4.

    It is also large compared to the observed abundance of luminous matter. The density parameter of stars is smaller than \(\Omega _b^0\) by one order of magnitude, \(\Omega _{\text {stars}} \simeq 2.7 \times 10^{-3}\) [27]. Most baryons are thus optically dark, probably contained in some diffuse intergalactic medium [28].

  5. 5.

    Antiparticles of cosmic origin such as antiprotons and positrons are seen in cosmic rays. Their fluxes are, however, consistent with the assumption that they are merely secondaries produced in energetic collisions of cosmic rays with the interstellar medium rather than primordial relics.

  6. 6.

    For recent reviews on dark matter, cf. for instance Refs. [3235]. Another ansatz to account for the various observed, but unexplained gravitational effects is to modify the theory of general relativity. While modifications of gravity (cf. in particular Refs. [36, 37]) are often able to explain isolated phenomena, they usually struggle to give a consistent description of all observed phenomena, which is why we will not consider them any further in this thesis.

  7. 7.

    Seminal works in this field have been the observations by Vera Rubin and Kent Ford, who measured the rotation curve of the Andromeda Nebula in 1970 [38], as well as by Sandra Faber and Robert Jackson, who studied stellar velocities in elliptical galaxies in 1976 [39].

  8. 8.

    The first astronomer to stumble upon the problem of the missing mass in galaxy clusters was Fritz Zwicky. In 1933, observations of the Coma Cluster led him to conclude that the galaxies in the cluster should actually fly apart, if there were not large amounts of invisible matter present in it, holding them together [41]. Zwicky is hence usually credited as the discoverer of dark matter.

  9. 9.

    As light neutrinos turn nonrelativistic only at very late times in the cosmological evolution, they represent, in fact, a form of hot dark matter in the current universe.

  10. 10.

    Later on we shall use a rounded version of the value in Eq. (2.15), namely \(\Omega _{\text {DM}}^{\text {obs}}h^2 = 0.11\).

  11. 11.

    Certain scenarios of warm dark matter or mixed dark matter which is composed of a mixture of cold, warm and or hot components, are also admissible [43, 44]. Likewise, also small amounts of baryonic matter in the form of massive compact halo objects (MACHOs) [45, 46] and or cold molecular gas clouds [47] may well contribute to the dark matter in galaxy halos.

  12. 12.

    The accelerated expansion of our universe became evident for the first time in measurements of the distance-redshift relation of high-redshift type Ia SNe in 1998 [48, 49].

  13. 13.

    Naively one might expect the energy density of the vacuum to be related to the Planck scale, \(\rho _\Lambda \sim M_P^4\). Interpreting dark energy as the energy of the vacuum, one then has to explain why \(\rho _\Lambda \simeq 0.73 \rho _c^0 \sim 10^{-123} M_P^4\). For a classic discussion of this so far unsolved problem cf. Ref. [55].

  14. 14.

    Given the allowed range of the total neutrino mass (cf. Eq. (2.7)), matching the two expressions for \(\rho _{\nu _i}\) in Eqs. (2.18) and (2.19) and solving for \(z\) shows that the heaviest neutrino, which eventually contributes most to \(\Omega _\nu ^0\), turns nonrelativistic at a redshift of \(\mathcal {O}(10..100)\).

  15. 15.

    Curiously enough, the matter-dominated era lasts sufficiently long to allow for the formation of such complex structures as galaxies, solar systems and human beings, which, from the perspective of mankind, appears to be a fortunate cosmic coincidence. The question of why dark energy becomes relevant exactly at the present time, i.e. why presently \(\Omega _\Lambda \sim \Omega _m\) rather than \(\Omega _\Lambda \ll \Omega _m\) or \(\Omega _\Lambda \gg \Omega _m\), is one of the greatest puzzles of modern cosmology. Cf. e.g. Ref [56].

  16. 16.

    Prior to hydrogen recombination, at \(T \sim 0.5\,\text {eV}\), helium decouples in a similar way. As hydrogen is still fully ionized at this time, the universe remains opaque after helium recombination.

  17. 17.

    For reviews on the physics of the CMB and its potential to constrain cosmological models, cf. for instance Refs. [58, 59].

  18. 18.

    Perturbations in the photon-baryon fluid can only evolve causally as long as they extend over scales smaller than the sound horizon. This explains the position of the first acoustic peak in the CMB power spectrum. It is located at an angular scale of roughly \(1^\circ \) or equivalently at \(\ell \sim 200\), which corresponds to the angular diameter of the sound horizon at last scattering.

  19. 19.

    Given a scale factor \(a \propto t^p\), \({\Omega _{\text {tot}} - 1}\) scales like \(\dot{a}^{-2} \propto t^{2(1-p)}\). During the phases of radiation and matter domination we respectively have \(p = 1/2\) and \(p = 2/3\).

  20. 20.

    For reviews on BBN, cf. for instance Refs. [62, 63].

  21. 21.

    Data on helium-3 solely derives from the solar system and high-metallicity regions of ionized hydrogen in our galaxy, which makes it difficult to infer its primordial abundance. On top of that, the theory of stellar helium-3 synthesis is in conflict with observations. For these two reasons, helium-3 is usually not used as a cosmological probe.

  22. 22.

    Recall that BBN enables us to trace the evolution of the hot thermal phase up to temperatures as high as \(T_{\text {RH}}^{\text {min}} \simeq 4\,\text {MeV}\) or equivalently cosmic times as early as \(t \simeq 0.05\,\text {s}\) (cf. Sect. 2.2.2).

  23. 23.

    The QCD scale \(\Lambda _{\text {QCD}}\) corresponds to the energy scale at which, according to its renormalization group running in perturbative QCD, the strong coupling constant \(g_s\) formally diverges.

  24. 24.

    Likewise, when referring to some Higgs product operator \(s^\dagger s\) acquiring a VEV \(v\), we will also sometimes write \(v = \left\langle s\right\rangle \), although we actually mean \(v = \left\langle s^\dagger s\right\rangle ^{1/2}\).

  25. 25.

    Gauge configurations belonging to different homotopy classes are transformed into each other via large gauge transformations.

References

  1. E.W. Kolb, M.S. Turner, The early universe. Front. Phys. 69, 1–547 (1990)

    MathSciNet  ADS  Google Scholar 

  2. S. Dodelson, Modern Cosmology (Academic University Press, Amsterdam, 2003)

    Google Scholar 

  3. V. Mukhanov, Physical foundations of cosmology (University Press, Cambridge, UK, 2005)

    Book  MATH  Google Scholar 

  4. M. Trodden, S. M. Carroll, TASI lectures: Introduction to cosmology. [astro-ph/0401547].

    Google Scholar 

  5. V. Rubakov, Introduction to Cosmology, PoS(RTN2005)003 (2005).

    Google Scholar 

  6. K. Nakamura et al. (Particle Data Group), Review of particle physics, J. Phys.G G37, 075021 (2010).

    Google Scholar 

  7. E. Komatsu et al., (WMAP Collaboration), Seven-year WMAP observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  8. W.J. Percival et al., (SDSS Collaboration), Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. Roy. Astron. Soc. 401, 2148–2168 (2010)

    Article  ADS  Google Scholar 

  9. A.G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl et al., A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder. Astrophys. J. 699, 539–563 (2009). [0905.0695].

    Google Scholar 

  10. M. Hicken, W. Wood-Vasey, S. Blondin, P. Challis, S. Jha et al., Improved dark energy constraints from 100 new CfA supernova type ia light curves. Astrophys. J. 700, 1097–1140 (2009). [0901.4804].

    Google Scholar 

  11. R. Kessler, A. Becker, D. Cinabro, J. Vanderplas, J. A. Frieman et al. First-year sloan digital sky survey-II (SDSS-II) supernova results: hubble diagram and cosmological parameters, Astrophys. J. Suppl. 185, 32–84 (2009). [0908.4274].

    Google Scholar 

  12. M. Kowalski et al., (Supernova Cosmology Project), Improved cosmological constraints from new, old and combined supernova datasets. Astrophys. J. 686, 749–778 (2008). [0804.4142].

    Google Scholar 

  13. J.C. Mather, E. Cheng, D. Cottingham, R. Eplee, D. Fixsen et al., Measurement of the cosmic microwave background spectrum by the cobe firas instrument. Astrophys. J. 420, 439–444 (1994)

    Article  ADS  Google Scholar 

  14. J.C. Mather, D. Fixsen, R. Shafer, C. Mosier, D. Wilkinson, Calibrator design for the COBE far infrared absolute spectrophotometer (FIRAS). Astrophys. J. 512, 511–520 (1999). [astro-ph/9810373].

    Google Scholar 

  15. G.F. Smoot, C. Bennett, A. Kogut, E. Wright, J. Aymon et al., Structure in the COBE differential microwave radiometer first year maps. Astrophys. J. 396, L1–L5 (1992)

    Article  ADS  Google Scholar 

  16. D. Fixsen, The temperature of the cosmic microwave background. Astrophys. J. 707, 916–920 (2009). [0911.1955].

    Google Scholar 

  17. M. Archidiacono, E. Calabrese, A. Melchiorri, The case for rark radiation. Phys. Rev. D84, 123008 (2011). [1109.2767].

    Google Scholar 

  18. C.A. Egan, C.H. Lineweaver, A larger estimate of the entropy of the universe. Astrophys. J. 710, 1825–1834 (2010). [0909.3983].

    Google Scholar 

  19. A. Ringwald, Prospects for the direct detection of the cosmic neutrino background. Nucl. Phys. A827, 501C–506C (2009). [0901.1529].

    Google Scholar 

  20. S. Hannestad, Primordial neutrinos. Ann. Rev. Nucl. Part. Sci. 56, 137–161 (2006). [hep-ph/0602058].

    Google Scholar 

  21. T.L. Smith, S. Das, O. Zahn, Constraints on neutrino and dark radiation interactions using cosmological observations. Phys. Rev. D85, 023001 (2012)

    ADS  Google Scholar 

  22. S. Fukuda et al., (Super-Kamiokande Collaboration), Tau neutrinos favored over sterile neutrinos in atmospheric muon-neutrino oscillations. Phys. Rev. Lett. 85, 3999–4003 (2000). [hep-ex/0009001].

    Google Scholar 

  23. Q. Ahmad et al., (SNO Collaboration), Measurement of the rate of \(\nu _e + d \rightarrow p + p + e^-\) interactions produced by \(^8\text{ B }\) solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87, 071301 (2001). [nucl-ex/0106015].

    Google Scholar 

  24. W. Hu, D.J. Eisenstein, M. Tegmark, Weighing neutrinos with galaxy surveys. Phys. Rev. Lett. 80, 5255–5258 (1998). [astro-ph/9712057].

    Google Scholar 

  25. J. Lesgourgues, S. Pastor, Massive neutrinos and cosmology. Phys. Rept. 429, 307–379 (2006). [astro-ph/0603494].

    Google Scholar 

  26. S.A. Thomas, F.B. Abdalla, O. Lahav, Upper bound of \(0.28\,\text{ eV }\) on the neutrino masses from the largest photometric redshift survey. Phys. Rev. Lett. 105, 031301 (2010). [0911.5291].

    Google Scholar 

  27. M. Fukugita, P.E. Peebles, The cosmic energy inventory. Astrophys. J. 616, 643–668 (2004). [astro-ph/0406095].

    Google Scholar 

  28. R. Cen, J.P. Ostriker, Where are the baryons? Astrophys. J. 514, 1 (1999). [astro-ph/9806281].

    Google Scholar 

  29. W. Buchmuller, R. Peccei, T. Yanagida, Leptogenesis as the origin of matter. Ann. Rev. Nucl. Part. Sci. 55, 311–355 (2005). [hep-ph/0502169].

    Google Scholar 

  30. G. Steigman, When clusters collide: constraints on antimatter on the largest scales. J. Cosmol. Astropart. Phys. 0810, 001 (2008). [0808.1122].

    Google Scholar 

  31. A.G. Cohen, A. De Rujula, S. Glashow, A matter-antimatter universe? Astrophys. J. 495, 539–549 (1998). [astro-ph/9707087].

    Google Scholar 

  32. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rept. 405, 279–390 (2005). [hep-ph/0404175].

    Google Scholar 

  33. J. Einasto, Dark Matter. [0901.0632].

    Google Scholar 

  34. D. Hooper, TASI 2008 Lectures on Dark Matter. [0901.4090].

    Google Scholar 

  35. G. Bertone (ed.), Particle Dark Matter: Observations, Models and Searches (Cambridge University Press, Cambridge, 2010), p. 738.

    Google Scholar 

  36. M. Milgrom, A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983)

    Article  ADS  Google Scholar 

  37. J.D. Bekenstein, Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D70, 083509 (2004). [astro-ph/0403694].

    Google Scholar 

  38. V.C. Rubin, J. Ford, W. Kent, Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379–403 (1970)

    Article  ADS  Google Scholar 

  39. S. Faber, R. Jackson, Velocity dispersions and mass to light ratios for elliptical galaxies. Astrophys. J. 204, 668 (1976)

    Article  ADS  Google Scholar 

  40. R. Catena, P. Ullio, A novel determination of the local dark matter density. J. Cosmol. Astropart. Phys. 1008, 004 (2010). [0907.0018].

    Google Scholar 

  41. F. Zwicky, Die rotverschiebung von extragalaktischen nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    ADS  Google Scholar 

  42. D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch, S.W. Randall et al., A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006). [astro-ph/0608407].

    Google Scholar 

  43. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest. Phys. Rev. D71, 063534 (2005). [astro-ph/0501562].

    Google Scholar 

  44. K. Jedamzik, M. Lemoine, G. Moultaka, Gravitino, axino Kaluza-Klein graviton warm and mixed dark matter and reionisation. J. Cosmol. Astropart. Phys. 0607, 010 (2006). [astro-ph/0508141].

    Google Scholar 

  45. B. Paczynski, Gravitational microlensing by the galactic halo. Astrophys. J. 304, 1–5 (1986)

    Article  ADS  Google Scholar 

  46. P. Tisserand et al., (EROS-2 Collaboration), Limits on the macho content of the galactic halo from the eros-2 survey of the magellanic clouds. Astron. Astrophys. 469, 387–404 (2007). [astro-ph/0607207].

    Google Scholar 

  47. F. De Paolis, G. Ingrosso, P. Jetzer, M. Roncadelli, A case for a baryonic dark halo. Phys. Rev. Lett. 74, 14–17 (1995). [astro-ph/9410016].

    Google Scholar 

  48. A.G. Riess et al., (Supernova Search Team), Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). [astro-ph/9805201].

    Google Scholar 

  49. S. Perlmutter et al., (Supernova Cosmology Project), Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999). [astro-ph/9812133], The Supernova Comology Project.

    Google Scholar 

  50. B. Ratra, P. Peebles, Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D37, 3406 (1988)

    ADS  Google Scholar 

  51. C. Wetterich, Cosmology and the fate of dilatation symmetry. Nucl. Phys. B302, 668 (1988)

    Article  ADS  Google Scholar 

  52. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Essentials of \(k\) essence. Phys. Rev. D63, 103510 (2001). [astro-ph/0006373].

    Google Scholar 

  53. B. Jain, P. Zhang, Observational tests of modified gravity. Phys. Rev. D78, 063503 (2008). [0709.2375].

    Google Scholar 

  54. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rept. 513, 1–189 (2012)

    MathSciNet  Google Scholar 

  55. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. I. Zlatev, L.-M. Wang, P.J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899 (1999). [astro-ph/9807002].

    Google Scholar 

  57. R. Dicke, P. Peebles, P. Roll, D. Wilkinson, Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965)

    Article  ADS  Google Scholar 

  58. W. Hu, S. Dodelson, Cosmic microwave background anisotropies. Annu. Rev. Astron. Astrophys. 40, 171–216 (2002). [astro-ph/0110414].

    Google Scholar 

  59. D. Samtleben, S. Staggs, B. Winstein, The cosmic microwave background for pedestrians: a review for particle and nuclear physicists. Annu. Rev. Nucl. Part. Sci. 57, 245–283 (2007). [0803.0834].

    Google Scholar 

  60. R. Sachs, A. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73–90 (1967)

    Article  ADS  Google Scholar 

  61. E.F. Bunn, A.R. Liddle, M. White, Four year COBE normalization of inflationary cosmologies. Phys. Rev. D54, 5917–5921 (1996). [astro-ph/9607038].

    Google Scholar 

  62. K.A. Olive, G. Steigman, T.P. Walker, Primordial nucleosynthesis: theory and observations. Phys. Rep. 333, 389–407 (2000). [astro-ph/9905320].

    Google Scholar 

  63. F. Iocco, G. Mangano, G. Miele, O. Pisanti, P.D. Serpico, Primordial Nucleosynthesis: from precision cosmology to fundamental physics. Phys. Rep. 472, 1–76 (2009)

    Article  ADS  Google Scholar 

  64. R.V. Wagoner, W.A. Fowler, F. Hoyle, On the synthesis of elements at very high temperatures. Astrophys. J. 148, 3–49 (1967)

    Article  ADS  Google Scholar 

  65. R.H. Cyburt, B.D. Fields, K.A. Olive, The NACRE thermonuclear reaction compilation and big bang nucleosynthesis. New Astron. 6, 215–238 (2001). [astro-ph/0102179].

    Google Scholar 

  66. R.H. Cyburt, B.D. Fields, K.A. Olive, An Update on the big bang nucleosynthesis prediction for Li-7: The problem worsens. J. Cosmol. Astropart. Phys. 0811, 012 (2008). [0808.2818].

    Google Scholar 

  67. G. Steigman, D. Schramm, J. Gunn, Cosmological limits to the number of massive leptons. Phys. Lett. B66, 202–204 (1977)

    Article  ADS  Google Scholar 

  68. G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti et al., Relic neutrino decoupling including flavor oscillations. Nucl. Phys. B729, 221–234 (2005). [hep-ph/0506164].

    Google Scholar 

  69. J. Bernstein, L.S. Brown, G. Feinberg, Cosmological helium production simplified. Rev. Mod. Phys. 61, 25 (1989)

    Article  ADS  Google Scholar 

  70. G. Mangano, P.D. Serpico, A robust upper limit on \(N_{\rm{eff}}\) from BBN, circa. Phys. Lett. B701, 296–299 (2011). [1103.1261].

    Google Scholar 

  71. M. Kawasaki, K. Kohri, N. Sugiyama, Cosmological constraints on late time entropy production. Phys. Rev. Lett. 82, 4168 (1999). [astro-ph/9811437].

    Google Scholar 

  72. S. Hannestad, What is the lowest possible reheating temperature? Phys. Rev. D70, 043506 (2004). [astro-ph/0403291].

    Google Scholar 

  73. R.H. Cyburt, J.R. Ellis, B.D. Fields, K.A. Olive, Updated nucleosynthesis constraints on unstable relic particles. Phys. Rev. D67, 103521 (2003). [astro-ph/0211258].

    Google Scholar 

  74. M. Kawasaki, K. Kohri, T. Moroi, Hadronic decay of late-decaying particles and Big-Bang nucleosynthesis. Phys. Lett. B625, 7–12 (2005). [astro-ph/0402490].

    Google Scholar 

  75. M. Pospelov, Particle physics catalysis of thermal big bang nucleosynthesis. Phys. Rev. Lett. 98, 231301 (2007). [hep-ph/0605215].

    Google Scholar 

  76. M. Kawasaki, K. Kohri, T. Moroi, Big bang nucleosynthesis and hadronic decay of long-lived massive particles. Phys. Rev. D71, 083502 (2005). [astro-ph/0408426].

    Google Scholar 

  77. K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles. Phys. Rev. D74, 103509 (2006). [hep-ph/0604251].

    Google Scholar 

  78. M. Kawasaki, K. Kohri, T. Moroi, A. Yotsuyanagi, Big bang nucleosynthesis and gravitino. Phys. Rev. D78, 065011 (2008)

    ADS  Google Scholar 

  79. G. Aad et al., (ATLAS Collaboration), Combined search for the standard model higgs boson using up to \(4.9\,\text{ fb }^{-1}\) of pp collision data at \(\sqrt{s} = 7 \,\text{ TeV }\) with the ATLAS detector at the LHC. Phys. Lett. B710, 49–66 (2012). [hep-ph/9809381].

    Google Scholar 

  80. S. Chatrchyan et al., (CMS), Combined results of searches for the standard model higgs boson in pp collisions at \(\sqrt{s} = 7 \,\text{ TeV }\). Phys. Lett. B710, 26–48 (2012). [1202.1408].

    Google Scholar 

  81. G. ’t Hooft, Symmetry breaking through bell-jackiw anomalies. Phys. Rev. Lett. 37, 8–11 (1976).

    Google Scholar 

  82. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D14, 3432–3450 (1976).

    Google Scholar 

  83. N. Manton, Topology in the Weinberg-Salam Theory. Phys. Rev. D28, 2019 (1983)

    MathSciNet  ADS  Google Scholar 

  84. F.R. Klinkhamer, N. Manton, A saddle Point solution in the Weinberg-Salam theory. Phys. Rev. D30, 2212 (1984)

    ADS  Google Scholar 

  85. V. Kuzmin, V. Rubakov, M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B155, 36 (1985)

    Article  ADS  Google Scholar 

  86. P.B. Arnold, L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory. Phys. Rev. D36, 581 (1987)

    ADS  Google Scholar 

  87. H. Klapdor-Kleingrothaus, S. Kolb, V. Kuzmin, Light lepton number violating sneutrinos and the baryon number of the universe. Phys. Rev. D62, 035014 (2000). [hep-ph/9909546].

    Google Scholar 

  88. P.B. Arnold, L.G. Yaffe, Nonperturbative dynamics of hot non-abelian gauge fields: beyond leading log approximation. Phys. Rev. D62, 125013 (2000). [hep-ph/9912305].

    Google Scholar 

  89. S.Y. Khlebnikov, M. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation. Nucl. Phys. B308, 885–912 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Schmitz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmitz, K. (2014). Early Universe Cosmology. In: The B−L Phase Transition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00963-6_2

Download citation

Publish with us

Policies and ethics