Skip to main content

An Approach to Fuzzy Modeling of Anti-lock Braking Systems

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 223))

Abstract

This chapter proposes an approach to fuzzy modeling of Anti-lock Braking Systems (ABSs). The local state-space models are derived by the linearization of the nonlinear ABS process model at ten operating points. The Takagi-Sugeno (T-S) fuzzy models are obtained by the modal equivalence principle, where the local state-space models are the rule consequents. The optimization problems are defined in order to minimize the objective functions expressed as the squared modeling errors, and the variables of these functions are a part of the parameters of input membership functions. Simulated Annealing algorithms are implemented to solve the optimization problems and to obtain optimal T-S fuzzy models. Real-time experimental results are included to validate the new optimal T-S fuzzy models for ABS laboratory equipment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhao, Z., Yu, Z., Sun, Z.: Research on fuzzy road surface identification and logic control for anti-lock braking system. In: Proceedings of IEEE International Conference on Vehicular Electronics and Safety, Shanghai, China, pp. 380–387 (2006)

    Google Scholar 

  2. Zheng, T., Ma, F., Zhang, K.: Estimation of reference vehicle speed based on T-S fuzzy model. In: Proceedings of international conference on advanced in control engineering and information science, Dali, China, vol. 15, pp. 188–193 (2011)

    Google Scholar 

  3. Wang, W.-Y., Chen, M.-C., Su, S.-F.: Hierarchical T-S fuzzy-neural control of anti-lock braking system and active suspension in a vehicle. Automatica 48, 1698–1706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Precup, R.-E., Spătaru, S.V., Rădac, M.-B., Petriu, E.M., Preitl, S., Dragoş, C.-A., David, R.-C.: Experimental results of model-based fuzzy control solutions for a laboratory antilock braking system. In: Hippe, Z.S., Kulikowski, J.L., Mroczek, T., (eds.), Human-Computer Systems Interaction: Backgrounds and Applications 2, Part 2, AICS, vol. 99, pp. 223–234. Springer, New York (2012)

    Google Scholar 

  5. Naderi, P., Farhadi, A., Mirsalim, M., Mohammadi, T.: Anti-lock and Anti-slip braking system, using fuzzy logic and sliding mode controllers. In: Proceedings of IEEE Vehicle Power and Propulsion Conference, Lille, France, p. 6 (2010)

    Google Scholar 

  6. Topalov, A.V., Oniz, Y., Kayacan, E., Kaynak, O.: Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm. Neurocomputting 74, 1883–1893 (2011)

    Article  Google Scholar 

  7. Bhandari, R., Patil, S., Singh, R.K.: Surface prediction and control algorithms for anti-lock brake system. Trans. Res. Part C Emerg. Technol. 21, 181–195 (2012)

    Article  Google Scholar 

  8. Aleksendrić, D., Jakovljević, Ž., Ćirović, V.: Intelligent control of braking process. Expert Syst. Appl. 39, 11758–11765 (2012)

    Article  Google Scholar 

  9. Garibaldi, J.M., Ifeachor, E.C.: Application of simulated annealing fuzzy model tuning to umbilical cord acid-base interpretation. IEEE Trans. Fuzzy Syst. 7, 72–84 (1999)

    Article  Google Scholar 

  10. Liu, G., Yang, W.: Learning and Tuning of fuzzy membership functions by simulated annealing algorithm. In: Proceedings of 2000 IEEE Asia-Pacific Conference on Circuits and Systems, Tianjin, China, pp. 367–370 (2000)

    Google Scholar 

  11. Almaraashi, M., John, R., Coupland S., Hopgood A.: Time series forecasting using a TSK fuzzy system tuned with simulated annealing. In: Proceedings of 2010 IEEE International Conference on Fuzzy Systems, Barcelona, Spain, p. 6 (2010)

    Google Scholar 

  12. Yanara, T.A., Akyürek, Z.: Fuzzy model tuning using simulated annealing. Expert Syst. Appl. 38, 8159–8169 (2011)

    Article  Google Scholar 

  13. Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Rădac, M.-B.: Fuzzy control systems with reduced parametric sensitivity based on simulated annealing. IEEE Trans. Industr. Electron. 59, 3049–3061 (2012)

    Article  Google Scholar 

  14. David, R.-C., Dragoş, C.-A., Bulzan, R.-G., Precup, R.-E., Petriu, E.M., Rădac, M.-B.: An approach to fuzzy modeling of magnetic levitation systems. Int. J. Artif. Intell. 9, 1–18 (2012)

    Google Scholar 

  15. Inteco: ABS: The laboratory anti-lock braking system controlled from PC—user manual, Inteco Sp. z o. o., Krakow, Poland (2007)

    Google Scholar 

  16. Grad, R.-B.: Biologically inspired optimization algorithm for fuzzy modeling of an anti-lock braking system laboratory equipment. M.Sc. thesis, “Politehnica” University of Timisoara, Timisoara, Romania (2012)

    Google Scholar 

  17. Köppen, M.: Light-weight evolutionary computation for complex image-processing applications. In: Proceedings of 6th International Conference on Hybrid Intelligent Systems, Auckland, New Zealand, pp. 3–3 (2006)

    Google Scholar 

  18. Deb, K., Gupta, S., Daum, D., Branke, J., Mall, A.K., Padmanabhan, D.: Reliability-based optimization using evolutionary algorithms. IEEE Trans. Evol. Comput. 13, 1054–1074 (2009)

    Article  Google Scholar 

  19. Blažič, S., Matko, D., Škrjanc, I.: Adaptive law with a new leakage term. IET Control Theory Appl. 4, 1533–1542 (2010)

    Article  MathSciNet  Google Scholar 

  20. Carrano, E.G., Takahashi, R.H.C., Fonseca, C.M., Neto, O.M.: Non-linear network optimization—an embedding vector space approach. IEEE Trans. Evol. Comput. 14, 206–226 (2010)

    Article  Google Scholar 

  21. Ko, M., Tiwari, A., Mehnen, J.: A review of soft computing applications in supply chain management. Appl. Soft Comput. 10, 661–674 (2010)

    Article  Google Scholar 

  22. Kudelka, M., Horak, Z., Snásel, V., Krömer, P., Platos, J., Abraham, A.: Social and swarm aspects of co-authorship network. Logic J. IGPL 20, 634–643 (2012)

    Article  Google Scholar 

  23. Johanyák, Z.C.: Student evaluation based on fuzzy rule interpolation. Int. J. Artif. Intell. 5, 37–55 (2010)

    Google Scholar 

  24. Vaščák, J., Madarász, L.: Adaptation of fuzzy cognitive maps—a comparison study. Acta Polytech. Hung. 7, 109–122 (2010)

    Google Scholar 

  25. Castillo, O., Melin, P., Garza, A.A., Montiel, O., Sepúlveda, R.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft. Comput. 15, 1145–1160 (2011)

    Article  Google Scholar 

  26. Schaefer, G., Hu, Q., Zhou, H., Peters, J.F., Hassanien, A.E.: Rough C-means and fuzzy rough C-means for colour quantisation. Fundam. Inf. 119, 113–120 (2012)

    MathSciNet  Google Scholar 

  27. Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 20, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  28. Geman, S., Geman, D.: Stochastic relaxation, gibbs distribution and the bayesian restoration in images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  29. Precup, R.-E., David, R.-C., Petriu, E.M., Rădac, M.-B., Preitl, S., Fodor, J.: Evolutionary optimization-based tuning of low-cost fuzzy controllers for servo systems. Knowl. Based Syst. 38, 74–84 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant in the framework of the Partnerships in priority areas—PN II program of the Romanian National Authority for Scientific Research ANCS, CNDI—UEFISCDI, project number PN-II-PT-PCCA-2011-3.2-0732, and by a grant of the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu-Codruţ David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

David, RC., Grad, RB., Precup, RE., Rădac, MB., Dragoş, CA., Petriu, E.M. (2014). An Approach to Fuzzy Modeling of Anti-lock Braking Systems. In: Snášel, V., Krömer, P., Köppen, M., Schaefer, G. (eds) Soft Computing in Industrial Applications. Advances in Intelligent Systems and Computing, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-00930-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00930-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00929-2

  • Online ISBN: 978-3-319-00930-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics