Skip to main content

Electromechanical Properties and Sensing

  • Chapter
  • First Online:
Electrical Properties of Graphite Nanoparticles in Silicone

Part of the book series: Springer Theses ((Springer Theses))

  • 718 Accesses

Abstract

This chapter is an investigation of the electromechanical properties of the GSC with a view to potential devices and applications. We explore the room temperature conduction processes under bending and differential pressure; gaining an insight into the transient piezoresistive response and opening up avenues for potential further work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Peng, X. Feng, D. Tianhuai, Q. Yuanzhen, Time dependence of electrical resistivity under uniaxial pressures for carbon black/polymer composites. J. Mater. Sci. 39(15), 4937–4939 (2004)

    Article  ADS  Google Scholar 

  2. M. Knite, V. Teteris, A. Kiploka, J. Kaupuzs, Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuat. A: Phys. 110(1), 142–149 (2004)

    Article  Google Scholar 

  3. L. Chen, G.H. Chen, L. Lu, Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv. Funct. Mater. 17(6), 898–904 (2007)

    Article  Google Scholar 

  4. K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey, Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9(10), 821–826 (2010)

    Article  ADS  Google Scholar 

  5. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004)

    Article  ADS  Google Scholar 

  6. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    Article  ADS  Google Scholar 

  7. W.E. Snyder, J. St. Clair, Conductive elastomers as sensor for industrial parts handling equipment. IEEE Trans. Instrum. Meas. 27(1), 94–99 (1978)

    Article  Google Scholar 

  8. S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26(5), 1825–1832 (2011)

    Article  Google Scholar 

  9. M. Hussain, Y.-H. Choa, K. Niihara, Conductive rubber materials for pressure sensors. J. Mater. Sci. Lett. 20, 525–527 (2001)

    Article  Google Scholar 

  10. C. Cochrane, M. Lewandowski, V. Koncar, A flexible strain sensor based on a conductive polymer composite for in situ measurement of parachute canopy deformation. Sensors 10(9), 8291–8303 (2010)

    Article  Google Scholar 

  11. M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, K. Mabuchi, A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens. J. 4(5), 589–596 (2004)

    Article  Google Scholar 

  12. M. Gad-el Hak, The Taming of the Shrew: Why Is It so Difficult to Control Turbulence? (Springer, Berlin, 2007)

    Google Scholar 

  13. Example of commercially available piezoresistive rubbers: www.zoflex.com, September 2012.

    Google Scholar 

  14. M. Cheng, C. Tsao, Y. Lai, Y. Yang, The development of a highly twistable tactile sensing array with stretchable helical electrodes. Sens. Actuat. A: Phys. 166(2), 226–233 (2011)

    Article  Google Scholar 

  15. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. 102(35), 12321–12325 (2005)

    Article  ADS  Google Scholar 

  16. L. Wang, T. Ding, P. Wang, Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation. Compos. Sci. Technol. 68, 3448–3450 (2008)

    Article  Google Scholar 

  17. T. Ding, L. Wang, P. Wang, Changes in electrical resistance of carbon-black-filled silicone rubber composite during compression. J. Polym. Sci. Part B: Polym. Phys. 45(19), 2700–2706 (2007)

    Article  ADS  Google Scholar 

  18. D. Beruto, M. Capurro, G. Marro, Piezoresistance behavior of silicone-graphite composites in the proximity of the electric percolation threshold. Sens. Actuat. A: Phys. 117(2), 301–308 (2005)

    Article  Google Scholar 

  19. W. Luheng, D. Tianhuai, W. Peng, Research on stress and electrical resistance of skin-sensing silicone rubber/carbon black nanocomposite during decompressive stress relaxation. Smart Mater. Struct. 18(6), 065002 (2009)

    Article  Google Scholar 

  20. L. Wang, T. Ding, P. Wang, Effects of compression cycles and precompression pressure on the repeatability of piezoresistivity for carbon black-filled silicone rubber composite. J. Polym. Sci. Part B: Polym. Phys. 46(11), 1050–1061 (2008)

    Article  ADS  Google Scholar 

  21. K. Yamaguchi, J.J.C. Busfield, A.G. Thomas, Electrical and mechanical behavior of filled elastomers. i. The effect of strain. J. Polym. Sci. Part B: Polym. Phys. 41(17), 2079–2089 (2003)

    Article  ADS  Google Scholar 

  22. L. Mullins, Softening of rubber by deformation. Rubber Chem. Technol. 42(1), 339–362 (1969)

    Article  Google Scholar 

  23. J. Diani, B. Fayolle, P. Gilormini, A review on the Mullins effect. Eur. Polym. J. 45(3), 601–612 (2009)

    Article  Google Scholar 

  24. T. Osswald, G. Menges, Materials Science of Polymers for Engineers (Hanser, Munchen, 2003)

    Google Scholar 

  25. M. Shaw, W. MacKnight, Introduction to Polymer Viscoelasticity (Wiley, New York, 2005)

    Google Scholar 

  26. W. Shouli, W. Peng, D. Tianhuai, Resistive viscoelasticity of silicone rubber/carbon black composite. Polym. Compos. 32(1), 29–35 (2011)

    Article  Google Scholar 

  27. L. Flandin, A. Chang, S. Nazarenko, A. Hiltner, E. Baer, Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers. J. Appl. Polym. Sci. 76(6), 894–905 (2000)

    Article  Google Scholar 

  28. J.K.M. Stübler, N. Fritzsche, Mechanical and electrical analysis of carbon black networking in elastomers under strain. Polym. Eng. Sci. 51(6), 1206–1217 (2011)

    Article  Google Scholar 

  29. G. Yaralioglu, A. Ergun, B. Bayram, E. Haeggstrom, B. Khuri-Yakub, Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers. Ultrason. Ferroelectr. Freq. Control 50(4), 449–456 (2003)

    Article  Google Scholar 

  30. S. Bhargava, Principles and Practice of Ultrasonography (Jaypee Brothers, New Delhi, 2002)

    Google Scholar 

  31. OlympusNDT, Waltham, MA, USA, Technical Notes For Transducer A380-SU (2009)

    Google Scholar 

  32. Health Effects of Exposure to Ultrasound and Infrasound. Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards (2010)

    Google Scholar 

  33. W.L. Nyborg, Heat generation by ultrasound in a relaxing medium. J. Acoust. Soc. Am. 70(2), 310–312 (1981)

    Article  ADS  Google Scholar 

  34. D.L. Folds, Speed of sound and transmission loss in silicone rubbers at ultrasonic frequencies. J. Acoust. Soc. Am. 56(4), 1295–1296 (1974)

    Article  ADS  Google Scholar 

  35. http://people.bath.ac.uk/pysarn/Pressure_imaging.m4v (June 2012)

  36. F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21(6), 710–715 (2009)

    Article  Google Scholar 

  37. J. Xu, M. Wong, C. Wong, Super high dielectric constant carbon black-filled polymer composites as integral capacitor dielectrics, in 54th Proceedings of the Electronic Components and Technology Conference, vol. 1, pp. 536–541 (2004)

    Google Scholar 

  38. T. Sekitani, T. Someya, Stretchable, large-area organic electronics. Adv. Mater. 22(20), 2228–2246 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel David Littlejohn .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Littlejohn, S.D. (2014). Electromechanical Properties and Sensing. In: Electrical Properties of Graphite Nanoparticles in Silicone. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00741-0_5

Download citation

Publish with us

Policies and ethics