Skip to main content

A Paradox of the Mean Variance Setting for the Long Term Investor

  • Chapter
  • First Online:
  • 1526 Accesses

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 198))

Abstract

We show that the mean-variance preferences have counterfactual implications for a risk averse long term decision maker. In the simple case of dynamic portfolio choice, we show that the optimal certainty equivalent is decreasing with the investor’s horizon towards its lower bound, the riskless rate. For some horizons (less than 25 years in our simulations), the economic value of diversification is 0 and therefore the optimal portfolio strategy is a buy and hold one in the riskless asset. Therefore, under-diversification is optimal. These results question the usefulness of the mean variance setting for long term dynamic decision making.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Ingersoll (1987) and Cochrane (2005) for a textbook treatment of the Finance applications. See also Choi (2008) for a literature review of its applications in Supply Chain Contracts. CARA utility combined with normal distributions leads to mean variance criterion and this is the work horse approach for the economic theory of information transmission by prices; see Marin and Rahi (2000) for a typical example.

  2. 2.

    See the recent extension by Zhang et al. (2009) and the references therein.

  3. 3.

    See Amenc et al. (2011).

  4. 4.

    See, for example, Jondeau and Rockinger (2012).

  5. 5.

    See Cochrane (2005), chapter 1 and 4 for details.

  6. 6.

    See Lioui (2013).

  7. 7.

    In an equilibrium setting, recall that the pricing kernel is the marginal utility of consumption of the representative investor. See Cochrane (2005) for details.

  8. 8.

    In a dynamic setting, the portfolio composition has two components, a mean-variance component and an intertemporal hedging component. The first one is always decreasing with risk aversion while the behavior of the second one is ambiguous. Nevertheless, since this component is mainly related to the volatility of the predictors that make the opportunity set time varying, it is in general low in size relative to the mean variance component, although economically sizeable.

  9. 9.

    This can be inferred from Eq. (10) of the relative risk aversion.

  10. 10.

    Recall that when markets are complete, the number of risky assets must be equal to the number of sources of risk.

References

  • Amenc, N., Goltz, F., & Lioui, A. (2011). 2011. Portfolio construction and Performance Measurement: Evidence from the field, Financial Analyst Journal, May/June, 67(3), 39–50.

    Google Scholar 

  • Choi, T. M. (2008). Mean - Variance analysis of supply and chain contracts, in Supply Chain (pp. 85–94). Theory and Applications : Edited by Vedran Kordic, I-Tech Education and Publishing.

    Google Scholar 

  • Cochrane, J. (2005). Asset Pricing. Princeton University Press.

    Google Scholar 

  • Cox, J., & Huang, C. F. (1989). Optimal consumption and portfolio policies when asset prices follow a diffusion process. Journal of Economic Theory, 49, 33–83.

    Article  Google Scholar 

  • Ingersoll, J. E. (1987). Theory of Financial Decision Making. Savage, Maryland: Rowman & Littlefield.

    Google Scholar 

  • Jondeau, E. and M. Rockinger, 2012, Time-Variability in Higher Moments is Important for Asset Allocation, forthcoming in Journal of Financial Econometrics.

    Google Scholar 

  • Maccheroni, F., Marinacci, M., Rustichini, A., & Taboga, M. (2009). Portfolio selection with monotone mean - variance preferences. Mathematical Finance, 19, 487–521.

    Article  Google Scholar 

  • Marin, J., & Rahi, R. (2000). Information Revelation and Market Incompleteness. Review of Economic Studies, 67, 563–579.

    Article  Google Scholar 

  • Lioui, A., 2013, Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences, Journal of Economic Dynamics and Control, 37(5), 1066 -1096. http://app.edhec.edu/faculty/spring/accueilFlow?execution=e2s1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Lioui .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Proposition 1:

Investing in the risky assets is optimal if the following condition hold:

$$\begin{aligned} \mathrm{{ce}}_\mathrm{{T}}^{*} \ge -\frac{1}{\mathrm{{T}}}\ln \mathrm{{P}}\left( {0, \mathrm{{T}}} \right) \end{aligned}$$
(A1)

As a consequence, we have:

$$\begin{aligned} \frac{1}{\mathrm{{T}}}\ln \left[ {\frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }-\frac{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0 }{\mathrm{{W}}_0}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2} \right] ^{-\frac{1}{2}}} \right] \ge -\frac{1}{\mathrm{{T}}}\ln P\left( {0, \mathrm{{T}}}\right) \end{aligned}$$
(A2)
$$\begin{aligned} \Leftrightarrow \mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}\le \frac{1}{\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) } \end{aligned}$$

On the other hand, we have:

$$\begin{aligned}&\frac{\partial \mathrm{{ce}}_\mathrm{{T}}^{*} }{\partial \mathrm{{T}}} = -\frac{1}{\mathrm{{T}}^{2}}\ln \left[ {\frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }-\frac{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0 }{\mathrm{{W}}_0 }\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}} \right] \\&\qquad \qquad \qquad +\frac{1}{\mathrm{{T}}}\frac{1}{\frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0} -\frac{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0 }{\mathrm{{W}}_0 }\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}}\frac{\partial }{\partial \mathrm{{T}}}\left[ {\frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }-\frac{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0}{\mathrm{{W}}_0}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}} \right] \end{aligned}$$
(A3)

A sufficient condition for this derivative to be negative is:

$$\begin{aligned} \frac{\partial }{\partial \mathrm{{T}}}\left[ {\frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }-\frac{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0 }{\mathrm{{W}}_0 }\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}} \right] <0 \end{aligned}$$
(A4)

Since we have:

$$\begin{aligned} \frac{\partial }{\partial \mathrm{{T}}}\left[ {\frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }-\frac{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0 }{\mathrm{{W}}_0 }\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}} \right]&=-\frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) \\&\qquad \qquad -\frac{\frac{1}{\upgamma }\mathrm{{P}}\left( {0,\mathrm{{T}}} \right) -\mathrm{{W}}_0 }{\mathrm{{W}}_0 }\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^\frac{1}{2} \end{aligned}$$
(A5)

Condition (A5) holds whenever:

$$\begin{aligned}&-\frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\frac{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0 }{\mathrm{{W}}_0 }\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}<0\\&\qquad \Leftrightarrow \frac{\partial }{\partial \mathrm{{T}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}>\frac{\frac{1}{\upgamma }}{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0 }\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}\left[ {-\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) } \right] \end{aligned}$$
(A6)

Using (A2), condition (A6) becomes:

$$\begin{aligned}&\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}>\frac{\frac{1}{\upgamma }}{\frac{1}{\upgamma }\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\mathrm{{W}}_0 }\frac{1}{\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) }\left[ {-\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) } \right] \\&\qquad \Leftrightarrow \frac{\partial }{\partial \mathrm{{T}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}>\frac{1}{\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) -\frac{\mathrm{{W}}_0 }{\frac{1}{\upgamma }}}\frac{1}{\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) }\left[ {-\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) } \right] \end{aligned}$$
(A7)

Condition (A7) holds when

$$\begin{aligned} \frac{\partial }{\partial \mathrm{{T}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{T}}^2 } \right] ^{-\frac{1}{2}}>\frac{1}{\mathrm{{P}}\left( {0,\mathrm{{ T}}} \right) -1}\frac{1}{\mathrm{{P}}\left( {0,\mathrm{{ T}}} \right) }\left[ {-\frac{\partial }{\partial \mathrm{{T}}}\mathrm{{P}}\left( {0, \mathrm{{T}}} \right) } \right] \end{aligned}$$
(A8)

holds and this will always be the case since the right hand side is always negative while the left hand side is always positive.

Proof of Proposition 2:

The first order condition writes:

$$\begin{aligned} \delta ^{\mathrm{{t}}}\left( {1-\upgamma \mathrm{{c_t}}^{*} } \right) -\uptheta \Lambda _\mathrm{{t}} =0\Leftrightarrow \mathrm{{c_t}}^{*} =\frac{1}{\upgamma }\left( {1-\uptheta \delta ^{-\mathrm{{t}}}\Lambda _\mathrm{{t}}} \right) \end{aligned}$$
(A9)

where \(\uptheta \) is the Lagrange multiplier. Using the budget constraint, the Lagrange multiplier is given by:

$$\begin{aligned} \mathrm{{E}}_0 \left[ \int _0^\mathrm{{T}} \frac{1}{\upgamma }\left( 1-\uptheta \delta ^{-\mathrm{{t}}}\Lambda _\mathrm{{t}} \right) \mathrm{{dt}} \right] =\mathrm{{W}}_0 \Leftrightarrow \frac{\frac{1}{\upgamma }\mathrm{{E}}_0 \left[ \int \nolimits _0^\mathrm{{T}} \Lambda _\mathrm{{t}}\mathrm{{dt}} \right] - \mathrm{{W}}_0}{\frac{1}{\upgamma }\mathrm{{E}}_0 \left[ \int _0^\mathrm{{T}} \delta ^{-\mathrm{{t}}}\Lambda _\mathrm{{t}}^2 \mathrm{{dt}} \right] }=\uptheta \end{aligned}$$
(A10)

This could be written as:

$$\begin{aligned} \uptheta =\frac{\frac{1}{\upgamma }\int _0^\mathrm{{T}}{\mathrm{{P}}\left( {0,\mathrm{{t}}} \right) \mathrm{{dt}}} \mathrm{{W}}_0 }{\frac{1}{\upgamma }\int _0^\mathrm{{T}} {\delta ^{\mathrm{{-t}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{t}}^2 } \right] \mathrm{{dt}}} } \end{aligned}$$
(A11)

It has a similar interpretation as the one obtained in (4). It is positive when the present value of all maximal consumptions is greater than initial wealth. The Dollar certainty equivalent for consumption at time t is such that:

$$\begin{aligned} \mathrm{{E}}_0 \left[ {\mathrm{{c_t}}^{*} -\frac{\upgamma }{2}\left( {\mathrm{{c_t}}^{*} } \right) ^{2}} \right] =\mathrm{{CE_t}}^{*} -\frac{\upgamma }{2}\left( {\mathrm{{CE_t}}^{*} } \right) ^{2} \end{aligned}$$
(A12)

Therefore, using the expression for the optimal consumption, one has:

$$\begin{aligned} \mathrm{{CE_t}}^{*} =\frac{1}{\upgamma }\left[ {1-\uptheta \delta ^{-\mathrm{{t}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{t}}^2 } \right] ^{-\frac{1}{2}}} \right] \end{aligned}$$
(A13)

The certainty equivalent associated with the optimal consumption plan will thus be:

$$\begin{aligned} \mathrm{{CE}}_{0,\mathrm{{T}}}^{*}=\int _{0}^{\mathrm{{T}}}\frac{\mathrm{{P(0,t)}}}{\mathrm{{P(0,T)}}}\mathrm{{CE}}^{*}_{\mathrm{{t}}}\mathrm{{dt}} \end{aligned}$$
(A14)

and therefore:

$$\begin{aligned} \mathrm{{CE}}^{*}_{0,\mathrm{{T}}}=\frac{1}{\upgamma }\int _{0}^{\mathrm{{T}}}\frac{\mathrm{{P(0,t)}}}{\mathrm{{P(0,T)}}}\left[ 1-\uptheta \delta ^\mathrm{{-t}}\mathrm{{E}}_{0}[\nabla _\mathrm{{t}}^{2}]^{1/2}\right] \mathrm{{dt}} \end{aligned}$$
(A15)

The annualized certainty equivalent becomes:

$$\begin{aligned} \mathrm{{ce}}_{0,\mathrm{{T}}}^{*} =&\frac{1}{\mathrm{{T}}}\ln \frac{\mathrm{{CE}}_{0,\mathrm{{T}}}^{*}}{\mathrm{{W}}_0 } \nonumber \\ =&\frac{1}{\mathrm{{T}}}\ln \frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0}+\frac{1}{\mathrm{{T}}}\ln \left[ \int \nolimits _0^\mathrm{{T}} \frac{\mathrm{{P}}( 0, \mathrm{{t}} )}{\mathrm{{P}}(0, \mathrm{{T}})} \left[ 1-\uptheta \delta ^{-\mathrm{{t}}}\mathrm{{E}}_0 \left[ \Lambda _\mathrm{{t}}^{2} \right] ^{-\frac{1}{2}} \right] \mathrm{{dt}}\right] \end{aligned}$$
(A16)

Substituting for the Lagrange multiplier yields:

$$\begin{aligned} \mathrm{{ce}}_{0, \mathrm{{T}}}^{*}&= \frac{1}{\mathrm{{T}}}\ln \frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 } \nonumber \\&+\frac{1}{\mathrm{{T}}}\ln \left[ \int \nolimits _0^\mathrm{{T}} \frac{\mathrm{{P}}( 0, \mathrm{{T}})}{\mathrm{{P}}( 0, \mathrm{{T}} )} \mathrm{{dt}}-\frac{\frac{1}{\upgamma }\int _0^\mathrm{{T}} \mathrm{{P}}( 0, \mathrm{{T}})\mathrm{{dt}} -\mathrm{{ W}}_0}{\frac{1}{\upgamma }\int _0^\mathrm{{T}} \delta ^{-t}\mathrm{{E}}_0 \left[ \Lambda _\mathrm{{t}}^2 \right] \mathrm{{dt}}}\int \nolimits _0^\mathrm{{T}} \frac{\mathrm{{P}}(0,\mathrm{{t}})}{0,\mathrm{{T}}}\delta ^{-\mathrm{{t}}}\mathrm{{E}}_0 \left[ \Lambda _\mathrm{{t}}^{2} \right] ^{-\frac{1}{2}}\mathrm{{dt}}\right] \end{aligned}$$
(A17)

Under the specific setting outlined above, this becomes:

$$\begin{aligned} \mathrm{{ce}}_{0, \mathrm{{T}}}^{*} =\;&\frac{1}{\mathrm{{T}}}\ln \frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }\nonumber \\&+\frac{1}{\mathrm{{T}}}\ln \left[ \frac{1}{\mathrm{{r}}}\left( {\mathrm{{e}}^{\mathrm{{rT}}}-1} \right) -\frac{\ln \delta +2\left( {\mathrm{{r}}-\frac{\kappa {\prime }\kappa }{2}} \right) }{\ln \delta +\frac{\kappa {\prime }\kappa }{2}}\frac{\mathrm{{e}}^{-\left( {\ln \delta +\frac{\kappa {\prime }\kappa }{2}} \right) \mathrm{{T}}}-1}{\mathrm{{e}}^{-\left( {\ln \delta +2\left( {\mathrm{{r}}-\frac{\kappa {\prime }\kappa }{2}} \right) } \right) \mathrm{{T}}}-1}\right. \\&{}\times \left. \left[ {-\frac{1}{\mathrm{{r}}}\left( {1-\mathrm{{e}}^{\mathrm{{rT}}}} \right) -\frac{\mathrm{{W}}_0 \mathrm{{e}}^{\mathrm{{rT}}}}{\frac{1}{\upgamma }}} \right] \right] \end{aligned}$$
(A18)

Note also that in the particular case of constant opportunity set, the condition (A11) implies:

$$\begin{aligned} \frac{\frac{1}{\upgamma }\int _0^\mathrm{{T}} {\mathrm{{P}}\left( {0,\mathrm{{t}}} \right) \mathrm{{dt}}}- \mathrm{{W}}_0}{\frac{1}{\upgamma }\int _0^\mathrm{{T}} {\delta ^{-\mathrm{{t}}}\mathrm{{E}}_0 \left[ {\Lambda _\mathrm{{t}}^2 } \right] \mathrm{{dt}}} }>0\Leftrightarrow \frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }>\frac{\mathrm{{r}}}{1-\mathrm{{e}}^{-\mathrm{{rT}}}} \end{aligned}$$
(A19)

The maximum certainty equivalent is the one that would obtain when consumption is equal to the upper bound at each time t in the future. Therefore:

$$\begin{aligned} \mathrm{{ce}}_{0, \mathrm{{T}}}^{\max } =\frac{1}{\mathrm{{T}}}\ln \left[ \frac{\frac{1}{\upgamma }}{\mathrm{{W}}_0 }\int \nolimits _0^\mathrm{{T}} \frac{\mathrm{{P}}( 0, \mathrm{{t}} )}{\mathrm{{P}}( 0, \mathrm{{T}} )} \mathrm{{dt}} \right] \end{aligned}$$
(A20)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lioui, A. (2014). A Paradox of the Mean Variance Setting for the Long Term Investor. In: El Ouardighi, F., Kogan, K. (eds) Models and Methods in Economics and Management Science. International Series in Operations Research & Management Science, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-00669-7_5

Download citation

Publish with us

Policies and ethics