Skip to main content

Studying the Baltic Sea Circulation with Eulerian Tracers

  • Chapter
Preventive Methods for Coastal Protection

Abstract

As shipping of environmentally hazardous cargo, like oil, has increased considerably in the Baltic in recent years, methods are needed to calculate the fairways between two harbours such that hazardous substances from a hypothetical accident will stay as long as possible away from ecologically sensitive areas like the coastal zone. For this purpose an ensemble approach based upon Eulerian tracer simulations is presented which has the potential to be further developed to become operational for the optimization of fairways. First, we introduce and compare Eulerian and Lagrangian descriptions of any fluid in general. Second, a three-dimensional circulation model of the Baltic Sea is presented from which currents are used to calculate the evolution of the Eulerian tracers in time that obey traditional advection-diffusion equations. The model set-up is presented in detail to illustrate the potential of ocean circulation models for our purposes but also their shortcomings. Third, examples of studies using Eulerian tracers are presented that analyse the characteristics of the circulation, like ventilation time scales and age of water masses. Finally, we focus on three selected examples of oil spill modelling using Eulerian methods. Although oil spill modelling very often utilizes a Lagrangian particle approach, we show that even Eulerian methods can be used that might under certain circumstances have some advantages compared to the Lagrangian approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This notion is used here to denote the Eastern, Northern and Western Gotland Basin, Bornholm Basin and Gdańsk Bay (cf. Chap. 2, Fig. 2.1).

  2. 2.

    A current vector is defined by its magnitude (or current speed) and its direction in three dimensions.

  3. 3.

    The formal parameterizations of sub-grid processes described in Chaps. 3, 7 and 10 only improve statistics of spreading of trajectories but do not improve the match of trajectories with reality.

References

  • Anomymous (2002) An updated assessment of the risk for oil spills in the Baltic Sea area. Presented as a Status report on risk analyses for use in response to oil pollution in the Baltic Sea by Dr S Ovsienko, Fifth meeting of the Sea-based Pollution Group HELCOM SEA, Turku, Finland, 13–17 May 2002. Helsinki Commission, Helsinki, 77 pp. http://www.helcom.fi/stc/files/shipping/RiskforOilSpillsReport2002.pdf

  • Andrejev O, Myrberg K, Alenius P, Lundberg PA (2004a) Mean circulation and water exchange in the Gulf of Finland—a study based on three-dimensional modelling. Boreal Environ Res 9:1–16

    Google Scholar 

  • Andrejev O, Myrberg K, Lundberg PA (2004b) Age and renewal time of water masses in a semi-enclosed basin—application to the Gulf of Finland. Tellus A 56:548–558

    Article  Google Scholar 

  • ASCE, Task Committee on modeling of oil spills of the Water Resources Engineering Division (1996) State-of-the-art review of modeling transport and fate of oil spills. J Hydraul Eng 122:594–609

    Article  Google Scholar 

  • Bergström S, Carlsson B (1994). River runoff to the Baltic Sea: 1950–1990. Ambio 23:280–287

    Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the Tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Bodin S (1979) A predictive numerical model of the atmospheric boundarylayer based on the turbulent energy equation. Rep Meteorol Climatol 13, Swedish Meteorological and Hydrological Institute, Norrköping, 139 pp

    Google Scholar 

  • Bolin B, Rodhe H (1973) A note on the concepts of age distribution and transit term in natural reservoirs. Tellus 25:58–62

    Article  Google Scholar 

  • Bryan K (1969) A numerical method for the study of the circulation of the World Ocean. J Comput Phys 4:347–376

    Article  MATH  Google Scholar 

  • Bryan K, Cox MD (1972) An approximate equation of state for numerical models of ocean circulation. J Phys Oceanogr 2:510–514

    Article  Google Scholar 

  • Bumke K, Hasse L (1989) An analysis scheme for the determination of true surfacewinds at sea from ship synoptic wind and pressure observations. Bound-Layer Meteorol 47:295–308

    Article  Google Scholar 

  • Cox MD (1984) A primitive equation 3-dimensional model of the ocean. Technical Report 1, Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ, 141 pp

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Deleersnijder E, Campin J-M, Delhez EJM (2001) The concept of age in marine modelling. I. Theory and preliminary model results. J Mar Syst 28:229–267

    Article  Google Scholar 

  • Delhez EJM, Campin J-M, Hirst AC, Deleersnijder E (1999) Towards a general theory of the age in ocean modelling. Ocean Model 1:17–27

    Article  Google Scholar 

  • Dera J (1992) Marine physics. Elsevier, Amsterdam, 516 pp

    Google Scholar 

  • Engqvist A (1996) Long-term nutrient balances in the eutrophication of the Himmerfjärden estuary. Estuar Coast Shelf Sci 42:483–507

    Article  Google Scholar 

  • Fennel W, Neumann T (2004) Introduction to the modeling of marine ecosystems. Elsevier oceanography series, vol 72. Elsevier, Boston, 89 pp

    Google Scholar 

  • Fennel W, Seifert T, Kayser B (1991) Rossby radii and phase speeds in the Baltic Sea. Cont Shelf Res 11:23–36

    Article  Google Scholar 

  • Gerdes R, Köberle C, Willebrand J (1991) The influence of numerical advection schemes on the results of ocean general circulation models. Clim Dyn 5:211–226

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere–ocean dynamics. Academic Press, London, 662 pp

    Google Scholar 

  • Gin K, Huda K, Lim WK, Tkalich P (2001) An oil spill-food chain interaction model for coastal waters. Mar Pollut Bull 42:590–597

    Article  Google Scholar 

  • Graham PL (1999) Modeling runoff to the Baltic Sea. Ambio 27:328–334

    Google Scholar 

  • Guo WJ, Wang YX (2009) A numerical oil spill model based on a hybrid method. Mar Pollut Bull 58:726–734

    Article  Google Scholar 

  • Gustafsson T, Kullenberg B (1936) Untersuchungen vor Trägheitströmungen in der Ostsee (Investigations of inertial currents in the Baltic Sea). Sven Hydrogr-Biol Komm Skr, Ny Ser Hydr 13:1–28

    Google Scholar 

  • Höglund A, Meier HEM (2012) Environmentally safe areas and routes in the Baltic Proper using Eulerian tracers. Mar Pollut Bull 64:1375–1385

    Article  Google Scholar 

  • Höglund A, Meier HEM, Broman B, Kriezi E (2009) Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere Model RCA3.0. Rapport Oceanografi No 97, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden 29 pp

    Google Scholar 

  • Jakobsen F (1995) The major inflow to the Baltic Sea during January 1993. J Mar Syst 6:227–240

    Article  Google Scholar 

  • Jȩdrasik J, Cieślikiewicz W, Kowalewski M, Bradtke K, Jankowski A (2008) 44 years hindcast of the sea level and circulation in the Baltic Sea. Coast Eng 55:849–860

    Article  Google Scholar 

  • Jerlov NG (1968) Optical oceanography. Elsevier, Amsterdam, 194 pp

    Google Scholar 

  • Kauker F, Meier HEM (2003) Modeling decadal variability of the Baltic Sea: 1. Reconstructing atmospheric surface data for the period 1902–1998. J Geophys Res—Oceans 108:3267

    Article  Google Scholar 

  • Krauss W (1973) Dynamics of the homogeneous and the quasihomogeneous ocean. Gebrüder Bornträger, Berlin, 302 pp

    Google Scholar 

  • Killworth P, Stainforth D, Webb D, Paterson S (1991) The development of a free-surface Bryan–Cox–Semtner ocean model. J Phys Oceanogr 21:1333–1348

    Article  Google Scholar 

  • Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336

    Article  Google Scholar 

  • Large WG, Pond S (1982) Sensible and latent heat flux measurements over the ocean. J Phys Oceanogr 12:464–482

    Article  Google Scholar 

  • Lehmann A (1995) A 3-dimensional baroclinic eddy-resolving model of the Baltic Sea. Tellus A 47:1013–1031

    Article  Google Scholar 

  • Lehmann A, Hinrichsen H-H (2000) On the thermohaline variability of the Baltic Sea. J Mar Syst 25:333–357

    Article  Google Scholar 

  • Löptien U, Meier HEM (2011) The influence of increasing water turbidity on the sea surface temperature in the Baltic Sea: a model sensitivity study. J Mar Syst 88:323–331

    Article  Google Scholar 

  • Luhamaa A, Kimmel K, Männik A, Rõõm R (2011) High resolution re-analysis for the Baltic Sea region during 1965–2005 period. Clim Dyn 36:727–738

    Article  Google Scholar 

  • Mårtensson S, Meier HEM, Pemberton P, Haapala J (2012) Ridged sea ice characteristics in the Arctic from a coupled multicategory sea ice model. J Geophys Res—Oceans 117:C00D15

    Article  Google Scholar 

  • Matthäus W, Lass HU, Tiesel R (1993) The major Baltic inflow in January 1993. ICES Statutory Meeting. ICES CM 1993/C:51

    Google Scholar 

  • Meier HEM (2001) On the parameterization of mixing in three-dimensional Baltic Sea models. J Geophys Res—Oceans 106:30997–31016

    Article  Google Scholar 

  • Meier HEM (2002) Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea. Part 1: model experiments and results for temperature and salinity. Clim Dyn 19:237–253

    Article  Google Scholar 

  • Meier HEM (2005) Modeling the age of Baltic Sea water masses: quantification and steady-state sensitivity experiments. J Geophys Res—Oceans 110:C02006

    Article  Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627

    Article  Google Scholar 

  • Meier HEM, Kauker F (2003) Modeling decadal variability of the Baltic Sea: 2. The role of freshwater inflow and large-scale atmospheric circulation for salinity. J Geophys Res—Oceans 108:3368

    Article  Google Scholar 

  • Meier HEM, Döscher R, Coward AC, Nycander J, Döös K (1999) RCO—Rossby Centre regional Ocean climate model: Model description (version 1.0) and first results from the hindcast period 1992/93. Rapport Oceanografi No 26, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 102 pp

    Google Scholar 

  • Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J Geophys Res—Oceans 108:3273

    Article  Google Scholar 

  • Meier HEM, Döscher R, Broman B, Piechura J (2004) The major Baltic inflow in January 2003 and preconditioning by smaller inflows in summer/autumn 2002: a model study. Oceanologia 46:557–579

    Google Scholar 

  • Meier HEM, Höglund A, Döscher R, Andersson H, Löptien U, Kjellström E (2011) Quality assessment of atmospheric surface fields over the Baltic Sea of an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia 53:193–227

    Article  Google Scholar 

  • Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models. GARP publications series 17, vol I. WMO, Geneva, 64 pp

    Google Scholar 

  • Müller P, Willebrand J (1989) Equations for oceanic motions. In: Sündermann J (ed) Landolt-Börnstein, group V. Oceanography, vol 3b

    Google Scholar 

  • Myrberg K, Andrejev O (2003) Main upwelling regions in the Baltic Sea—a statistical analysis based on three-dimensional modelling. Boreal Environ Res 8:97–112

    Google Scholar 

  • Myrberg K, Andrejev O (2006) Modelling of the circulation, water exchange and water age properties of the Gulf of Bothnia. Oceanologia 48(S):55–74

    Google Scholar 

  • Neumann T, Fennel W, Kremp C (2002) Experimental simulations with an ecosystem model of the Baltic Sea: a nutrient load reduction experiment. Glob Biogeochem Cycles 16:1033

    Article  Google Scholar 

  • Omstedt A, Chen Y, Wesslander K (2005) A comparison between the ERA40 and the SMHI gridded meteorological databases as applied to Baltic Sea modeling. Nord Hydrol 36:369–380

    Google Scholar 

  • Palmén E (1930) Untersuchungen über die Strömungen in den Finnland umgebenden Meeren. Commentationes physico-mathematicae, vol 12. Societas Scientarium Fennica, Helsinki

    Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956

    Article  Google Scholar 

  • Reed M, Johansen O, Brandvik PJ, Daling P, Lewis A, Fiocco R, Mackay D, Prentki R (1999) Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci Technol Bull 5:3–16

    Article  Google Scholar 

  • Rodi W (1980) Turbulence models and their application in hydraulics—a state-of-the-art review. International Association of Hydraulic Research, Delft, 104 pp

    Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  • Seifert T, Tauber F, Kayser B (2001) A high resolution spherical grid topography of the Baltic Sea, 2nd edition. In: Baltic Sea science congress, Stockholm, 25–29 November 2001, Poster #147, www.io-warnemuende.de/iowtopo

    Google Scholar 

  • Semtner AJ (1974) A general circulation model for the World Ocean. Technical Report 9, Department of Meteorology, University of California, Los Angeles, California, 99 pp

    Google Scholar 

  • Sjöberg B (ed) (1992) Hav och Kust. Sveriges Nationalatlas Förlag. Almquist & Wiksell International, Stockholm

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Steinhorn I (1991) Notes and correspondence—salt flux and evaporation. J Phys Oceanogr 21:1681–1683

    Article  Google Scholar 

  • Stevens DP (1991) The open boundary condition in the United Kingdom fine-resolution Antarctic model. J Phys Oceanogr 21:1494–1499

    Article  Google Scholar 

  • Tkalich P, Huda K, Gin KYH (2003) A multiphase oil spill model. J Hydraul Res 41:115–125

    Article  Google Scholar 

  • UNESCO (1981) United Nations Educational, Scientific, and Cultural Organization. Tenth report of the joint panel on oceanographic tables and standards, UNESCO technical papers in marine science 36, 26 pp

    Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Webb DJ, Coward AC, de Cuevas BA, Gwilliam CS (1997) A multiprocessor ocean circulation model using message passing. J Atmos Ocean Technol 14:175–183

    Article  Google Scholar 

  • Webb DJ, de Cuevas BA, Richmond CS (1998) Improved advection schemes for ocean models. J Atmos Ocean Technol 15:1171–1187

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this study is part of the project BalticWay (The potential of currents for environmental management of the Baltic Sea maritime industry) and has received funding from the European Commission’s Seventh Framework Programme (FP7 2007–2013) under Grant agreement No. 217246 made with BONUS, the joint Baltic Sea research and development program, and from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas, Ref. No. 2008–1898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Markus Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meier, H.E.M., Höglund, A. (2013). Studying the Baltic Sea Circulation with Eulerian Tracers. In: Soomere, T., Quak, E. (eds) Preventive Methods for Coastal Protection. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00440-2_4

Download citation

Publish with us

Policies and ethics