Skip to main content

The Canadian Pyrite Experience and Comparisons with the Irish Problems

  • Chapter
  • First Online:
Book cover Implications of Pyrite Oxidation for Engineering Works

Abstract

Although the problems associated with sulphate-generation were not known in Ireland until the early 2000s, this has long been appreciated in Canada where much of the early research work was undertaken. Comparisons are made between the Canadian and Irish experiences, including the differences between the onset, rate and extent of the heave caused by the oxidation of iron sulphides in natural ground and/or aggregate beneath structures. Some recent work into the possibility of predicting the extent of swell is presented and ongoing research into ways of avoiding or mitigating the development of heave is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASTM C295. (2011, Mar 02). Standard guide for petrographic examination of aggregates for concrete. Annual Book of ASTM Standards (Vol. 04).

    Google Scholar 

  • Bellaloui, A., Ballivy, G., & Rivard, P. (2003, May). Neutralisation du Potentiel Gonflement des Remblais de Fondation par des Injections de Coulis Spéciaux. Final report, presented to the Société Canadienne d’hypothèques et de logement, GR 03-05-01.

    Google Scholar 

  • Bérubé, M.-A., Locat, J., Gélinas, P., Chagnon, J.-Y., & Lefrançois, P. (1986). Black shale heaving at Sainte-Foy, Quebec, Canada. Canadian Journal of Earth Sciences, 23, 1774–1781.

    Article  Google Scholar 

  • BNQ 2560-500/2003. (2003). Aggregate—aggregate material sulfate swelling potential petrographic index determination—SPPI evaluation test method, BNQ (Bureau de normalization du Québec).

    Google Scholar 

  • Bromley, A. (2000). A compendium of concrete aggregates used in southwest England. Falmouth, Cornwall: Petrolab.

    Google Scholar 

  • Comité Technique Québécois D’étude Des Problèmes De Gonflement Associés à La Pyrite, Appraisal procedure for existing residential buildings. (2001, June 4). Procedure CTQ-M200, Version 2.0.

    Google Scholar 

  • Cormier, M-C. (2000). La Pyrite. École Pllytechnique de Montréal, Projet de fin d’études – 7.599.

    Google Scholar 

  • CSA A23.1 and .2 (1994). Concrete materials and methods of concrete construction and methods of test for concrete (p. 350). Toronto: Canadian Standards Association.

    Google Scholar 

  • CSA A23.2-15A (2004). Petrographic Examination of Aggregates. Toronto: Canadian Standards Association.

    Google Scholar 

  • Dougherty, M. T., & Barsotti, N. J. (1972). Structural damage and potentially expansive sulfide minerals. Bulletin of the Association of Engineering Geologists, IX(2), 105–125.

    Google Scholar 

  • Duchesne, J., & Fournier, B. (2011, Apr). Petrography of concrete deteriorated by weathering of sulphide minerals. Paper presented at the 33rd International Conference on Cement Microscopy, San Francisco, California.

    Google Scholar 

  • EN 12620 (2002). Aggregates for concrete. Brussels: European Committee for Standardization.

    Google Scholar 

  • Fasiska, E., Wagenblast, N., & Dougherty, M. T. (1974). The oxidation mechanisms of sulphide minerals. Bulletin of the Association of Engineering Geology, 11, 75–82.

    Google Scholar 

  • Golder Associates Ltd. (2011). “Geotechnical Data Report, Geotechnical and Hydrogeological Investigation Ottawa Light Rail Transit (OLRT) Tunnel (Segment 2), Ottawa, Ontario”, Report No. 10-1121-0222, Dated December 2011.

    Google Scholar 

  • GSI, (2001). “Geology of Meath”, Geological Survey of Ireland.

    Google Scholar 

  • Gusek, J. J. (1994, Oct 30–Nov 2). Avoiding and remediating acid rock drainage. Presented at Latin American Mining Opportunities, Randol at Vancouver ‘94.

    Google Scholar 

  • Gusek, J. J., Masloff, B., & Fodor, J. (2012). Engineered pumpable pHoam™: A new innovative method for mitigating ARD. Seattle: SME.

    Google Scholar 

  • Gusek, J. J., Moore, H., Bateman, V., Ozment, J., Oliver, L., Kathman, D., Waples, J., Rutkowski, Bowden, W., & Reither, A. (2008, May 6–9). A new guidance document for mitigating impacts from acid-producing rock formations in Tennessee road construction projects. Presented at the 59th Annual Highway Geology Symposium, Santa Fe, New Mexico.

    Google Scholar 

  • Hagerman, T., & Roosaar, H. (1955) Damage to concrete caused by sulphide minerals (Vol. 2, pp. 151–161). Betong, Sweden.

    Google Scholar 

  • Lavoie, D., Thériault, R., & Malo, M. (2011). The Upper Ordovician and Lorraine Shales in southern Québec: Sedimentological and geochemical frameworks. Recovery—2011 CSPG CSEG CWLS Convention.

    Google Scholar 

  • Lee, H., Cody, R. D., Cody, A. M., & Spry, P. G. (2005). The formation and role of ettringite in Iowa highway concrete deterioration. Cement and Concrete Research, 35, 332–343.

    Article  Google Scholar 

  • Lo, K. Y. & Micic, S. (2010). Evaluation of swelling properties of shales for the design of underground structures. Proceedings, International Tunnelling Conference, Vancouver, Canada.

    Google Scholar 

  • Lo, K. Y., Wai, R. S. C., Palmer, J. H. L., & Quigley, R. M. (1978). Time dependent deformation of shaly rock in southern Ontario. Canadian Geotechnical Journal, 15(4), 537–547.

    Google Scholar 

  • Long, J. D., & Williams, P. A. (1990). “Report of Structural Distress Investigation: Phase I, Johnson City Public Library. Blountville, TN”, S & ME Inc. 31, 1990.

    Google Scholar 

  • Lugg, A., & Probert, D. (1996). ’Mundic’-type problems: A building material catastrophe. Construction and Building Materials, 10(6), 467–474.

    Article  Google Scholar 

  • Lutenegger, A. J., Wollenhaupt, N. C., et al. (1979). Laboratory simulation of shale expansion by induced gypsum growth. Canadian Geotechnical Journal, 16, 405–409.

    Article  Google Scholar 

  • Maher, M. L. J., Azzie, B., Gray, C., & Hunt, J. (2011, Oct). A large scale laboratory swell test to establish the susceptibility to expansion of crushed rock containing pyrite. 14th Pan-Am Geotechnical Conference, Toronto, Canada.

    Google Scholar 

  • Nantel, B. (2011). Claims regarding faulty concrete foundations—Québec, Canada. NHBRC Housing Conference 2011, Cape Town, South Africa.

    Google Scholar 

  • National Roads Authority (NRA). (2000, Mar) Specification for road works (Vol. 1). Manual of contract documents for road works.

    Google Scholar 

  • OLR (Ottawa’s Light Rail Transit Project). (2012, Mar 6). OLRT design improvement update. Presentation to the Finance and Economic Development Committee, www.ottawalightrail.ca.

  • Penner, E., Gillott, J. E., & Eden, J. (1970). Investigation of heave in Billings Shale by mineralogical and biogeochemical methods. Canadian Geotechnical Journal, 7, 333–338.

    Article  Google Scholar 

  • Pépin, C. (2000). Endommagements de résidences par le gonflement de remblais pyriteux et essai de mesure du potentiel de gonflement (p. 164). Mémoire de maîtrise, Université de Sherbrooke.

    Google Scholar 

  • Quigley, R. M., & Vogan, R. W. (1969, Dec 8–9). Black shale heaving at Ottawa, Canada. Paper presented at the 22nd Canadian Soil Mechanics Conference, Queen’s University, Kingston, Ontario.

    Google Scholar 

  • Roy, M-A. (2011). A challenge for managers of guarantee plans in Québec. NHBRC Housing Conference 2011, Cape Town, South Africa.

    Google Scholar 

  • Shrimer, F. H., & Bromley, A. V. (2012, Apr). Pyritic heave in Ireland: The role of petrography. Paper presented at the 34th International Conference on Concrete Microscopy, Halle, Germany.

    Google Scholar 

  • Spanovich, M. (1969). Damage to a structure founded on pyrite shale. Engineering in Appalachian Shales Conference. Morgantown, West Virginia: West Virginia University.

    Google Scholar 

  • Thériault, R. (2012). Caractérisation du Shale d’Utica et du Groupe de Lorraine, Basses-Terres du Saint-Laurent, Partie 2: Interprétation geologique. Report No. DV 2012-04, Document publié par Géologie Québec.

    Google Scholar 

Download references

Acknowledgments

The assistance of the following Golder Associates colleagues in the preparation of this chapter is acknowledged: Bernadette Azzie, Barry Balding, Mario Gervais, Jim Gusek, Terry Nicholas, Fred Shrimer, Troy Skinner, and Mark Telesnicki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. J. Maher .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maher, M.L.J. (2014). The Canadian Pyrite Experience and Comparisons with the Irish Problems. In: Implications of Pyrite Oxidation for Engineering Works. Springer, Cham. https://doi.org/10.1007/978-3-319-00221-7_7

Download citation

Publish with us

Policies and ethics