Skip to main content

Data Structures for Continuous Generalisation: tGAP and SSC

  • Chapter
  • First Online:
Book cover Abstracting Geographic Information in a Data Rich World

Part of the book series: Lecture Notes in Geoinformation and Cartography ((ICA))

Abstract

Spatial zoom and thematic navigation are indispensable functionalities for digital web and mobile maps. Therefore, recent map generalisation research has introduced the first truly smooth vario-scale structure (after several near vario-scale representations), which supports continuous or smooth zooming. In the implementation, the vario-scale representation of 2D geo-information can be stored as a single 3D (2D+scale) data structure. A single uniform scale map in 2D is then derived by computing a horizontal slice through the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai T, van Oosterom P (2002) GAP-tree extensions based on Skeletons. Paper presented at the advances in spatial data handling, 10th international symposium on spatial data handling, Ottawa, Canada, 9–12 July 2002

    Google Scholar 

  • Ballard DH (1981) Strip trees: a hierarchical representation for curves. Commun Assoc Comput Mach 14(5):310–321. doi:10.1145/358645.358661

    Google Scholar 

  • Been K, Nöllenburg M, Poon S-H, Wolff A (2010) Optimizing active ranges for consistent dynamic map labeling. Comput Geom 43(3):312–328

    Article  Google Scholar 

  • Bertolotto M, Egenhofer MJ (2001) Progressive transmission of vector map data over the World Wide Web. Geoinformatica 5(4):345–373. doi:10.1023/a:1012745819426

    Article  Google Scholar 

  • Bregt A, Bulens J (1996) Application oriented generalization of area objects. M Methods for the generalization of geo-databases. Netherlands Geodetic Commission, Delft, The Netherlands, pp 57–64

    Google Scholar 

  • Buttenfield B (2002) Transmitting vector geospatial data across the internet. In: Egenhofer M, Mark D (eds) Geographic information science, vol 2478. Lecture notes in computer science. Springer Berlin Heidelberg, pp 51–64. doi:10.1007/3-540-45799-2_4

  • Cecconi A, Galanda M (2002) Adaptive zooming in web cartography. Comput Graph Forum 21(4):787–799. doi:10.1111/1467-8659.00636

    Article  Google Scholar 

  • DMA USDMA (1986) Defense Mapping Agency product specifications for digital feature analysis data (DFAD) Level 1-C and Level 3-C (DFAD): level 1 and level 2. DMA Aerospace Center, St. Louis, Mo

    Google Scholar 

  • Douglas DH, Peucker TK (1973) Algorithms for the reduction of the number of points required to represent a line or its caricature. Cartographica: Int J Geograph Inf Geovisual 10(2):112–122. doi:10.3138/FM57-6770-U75U-7727

  • Gunther O (1988) Efficient structures for geometric data management, vol 337. Lecture notes in computer science. Springer, Berlin

    Google Scholar 

  • Guttman A (1984) R-trees: a dynamic index structure for spatial searching. SIGMOD Rec 14(2):47–57. doi:10.1145/971697.602266

    Article  Google Scholar 

  • Hägerstrand T (1970) What about people in regional science? Pap Reg Sci 24(1):6–21

    Article  Google Scholar 

  • Hampe M, Sester M, Harrie L (2004) Multiple representation databases to support visualization on mobile devices. In: Proceedings of the 20th ISPRS congress, vol 35 of international archives of photogrammetry, remote sensing and spatial information sciences, Istanbul, Turkey, vol 35(6), pp 135–140

    Google Scholar 

  • Harrie L, Sarjakoski T, Lehto L (2002) A variable-scale map for small-display cartography. Int Arch Photogrammetry Remote Sens Spat Inf Sci 34(4):237–242

    Google Scholar 

  • Haunert J-H, Wolff A (2006) Generalization of land cover maps by mixed integer programming. Paper presented at the proceedings of the 14th annual ACM international symposium on advances in geographic information systems, Arlington, Virginia, USA

    Google Scholar 

  • Haunert J-H, Dilo A, van Oosterom P (2009) Constrained set-up of the tGAP structure for progressive vector data transfer. Comput Geosci 35(11):2191–2203

    Article  Google Scholar 

  • Hildebrandt J, Owen M, Hollamby R (2000) CLUSTER RAPTOR: dynamic geospatial imagery visualisation using backend repositories. In: Proceedings of the 5th international command and control research and technology symposium (ICCRTS) 2000

    Google Scholar 

  • Hofman A (2008) Developing a vario-scale IMGeo using the constrained tGAP structure. MSc thesis geomatics, Technical Delft University

    Google Scholar 

  • Jones CB, Abraham IM (1987) Line generalisation in a global cartographic database. Cartographica: Int J Geograph Inf Geovisual 24(3):32–45. doi:10.3138/0666-1648-61L4-3164

  • Jones C, Abdelmoty A, Lonergan M, van der Poorten P, Zhou S (2000) Multi-scale spatial database design for online generalisation. In: 9th international symposium on spatial data handling, pp 34–44

    Google Scholar 

  • Kreveld M (2001) Smooth generalization for continuous zooming. In: Proceedings of 20th international cartographic conference, Beijing (China), pp 2180–2185

    Google Scholar 

  • Lazaridis I, Mehrotra S (2001) Progressive approximate aggregate queries with a multi-resolution tree structure. Paper presented at the proceedings of the 2001 ACM SIGMOD international conference on management of data, Santa Barbara, California, USA

    Google Scholar 

  • Meijers M (2011) Simultaneous and topologically safe line simplification for a variable-scale planar partition. In: Geertman S, Reinhardt W, Toppen F (eds) Advancing geoinformation science for a changing world. Lecture notes in geoinformation and cartography. Springer Berlin Heidelberg, pp 337–358. doi:10.1007/978-3-642-19789-5_17

  • Meijers M, van Oosterom P (2011) The space-scale cube: an integrated model for 2D polygonal areas and scale. Paper presented at the 28th urban data management symposium, volume 38 of international archives of photogrammetry, remote sensing and spatial information sciences

    Google Scholar 

  • Meijers M, van Oosterom P, Quak W (2009) A storage and transfer efficient data structure for variable scale vector data. In: Sester M, Bernard L, Paelke V (eds) Advances in GIscience. Lecture notes in geoinformation and cartography. Springer Berlin Heidelberg, pp 345–367. doi:10.1007/978-3-642-00318-9_18

  • Noguera JM, Segura RJ, Ogáyar CJ, Joan-Arinyo R (2011) Navigating large terrains using commodity mobile devices. Comput Geosci 37(9):1218–1233. doi:10.1016/j.cageo.2010.08.007

    Article  Google Scholar 

  • Pu S, Zlatanova S (2006) Integration of GIS and CAD at DBMS level. In: Proceedings of UDMS 2006, pp 9.61–69.71

    Google Scholar 

  • Rosenbaum R, Schumann H (2004) Remote raster image browsing based on fast content reduction for mobile environments. Paper presented at the proceedings of the seventh Eurographics conference on multimedia, Nanjing, China

    Google Scholar 

  • Samet H (1984) The quadtree and related hierarchical data structures. ACM Comput Surv Arch 16(2):187–260. doi:10.1145/356924.356930

    Article  Google Scholar 

  • Sester M, Brenner C (2005) Continuous generalization for visualization on small mobile devices. In: Developments in spatial data handling. Springer, Berlin Heidelberg, pp 355–368. doi:10.1007/3-540-26772-7_27

  • Stoter J, Meijers M, van Oosterom P, GrĂĽnreich D, Kraak M-J (2010) Applying DLM and DCM concepts in a multi-scale data environment. In: Buttenfield BP, Brewer CA, Clarke KC, Finn MP, Usery EL (eds) Proceedings of GDI 2010: symposium on generalization and data integration 2010, pp 1–7

    Google Scholar 

  • Thompson RM, van Oosterom P (2012) Modelling and validation of 3D cadastral objects. Urban and regional data management—UDMS annual 2011, pp 7–23

    Google Scholar 

  • van Oosterom P (1986, 1989) A reactive data structure for geographic information systems. In: AutoCarto 9, Baltimore, Maryland, pp 665–674

    Google Scholar 

  • van Oosterom P (1990) Reactive data structures for geographic information systems. PhD Theses, Department of Computer Science, Leiden University, The Netherlands

    Google Scholar 

  • van Oosterom P (1992) A storage structure for a multi-scale database: the reactive-tree. Comput Environ Urban Syst 16(3):239–247. doi:10.1016/0198-9715(92)90036-Q

    Article  Google Scholar 

  • van Oosterom P (1993) The GAP-tree, an approach to “On-the-Fly” map generalization of an area partitioning. GIS and generalization, methodology and practice. Taylor & Francis, London

    Google Scholar 

  • van Oosterom P (1994) Reactive data structures for geographic information systems. Oxford University Press, Inc.

    Google Scholar 

  • van Oosterom P (2005) Variable-scale topological data structures suitable for progressive data transfer: The GAP-face tree and GAP-edge forest. Cartogr Geogr Inf Sci 32(4):331–346. doi:10.1559/152304005775194782

    Article  Google Scholar 

  • van Oosterom P, Meijers M (2011a) Method and system for generating maps in an n-dimensional space. Dutch patent application 2006630, filed 19 April 2011, published October 2012

    Google Scholar 

  • van Oosterom P, Meijers M (2011b) Towards a true vario-scale structure supporting smooth-zoom. In: Proceedings of 14th ICA/ISPRS workshop on generalisation and multiple representation 2011, pp 1–19

    Google Scholar 

  • van Oosterom P, Schenkelaars V (1995) The development of an interactive multi-scale GIS. Int J Geogr Inf Syst 9(5):489–507. doi:10.1080/02693799508902052

    Article  Google Scholar 

  • van Oosterom P, Stoter J (2010) 5D data modelling: full integration of 2D/3D space, time and scale dimensions. Paper presented at the proceedings of the 6th international conference on geographic information science 2010, Zurich, Switzerland

    Google Scholar 

  • van Oosterom P, Stoter J, Quak W, Zlatanova S (2002) The balance between geometry and topology. In: Richardson D, van Oosterom P (eds) 10th international symposium on spatial data handling. Springer, Berlin, pp 121–135. doi:10.1007/978-3-642-56094-1_16

  • van Putten J, van Oosterom P (1998) New results with generalized area partitionings. In: Proceedings 8th international symposium on spatial data handling 1998, pp 485–495

    Google Scholar 

  • van Smaalen JWM (1996) A hierarchic rule model for geographic information abstraction. In: Proceedings, SDH’96, Delft, The Netherlands, p 4b.31

    Google Scholar 

  • van Smaalen JWM (2003) Automated aggregation of geographic objects—a new approach to the conceptual generalisation of geographic databases. PhD Theses, Wageningen University, The Netherlands

    Google Scholar 

  • Vermeij M, van Oosterom P, Quak W, Tijssen (2003) T Storing and using scale-less topological data efficiently in a client-server DBMS environment. In: Proceedings of the 7th international conference on geocomputation, pp 1–11

    Google Scholar 

  • Zhou X, Prasher S, Sun S, Xu K (2004) Multiresolution spatial databases: making web based spatial applications faster. In: Proceedings of the 6th Asia-Pacific web conference, APWeb. Springer, pp 36-47

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Dutch Technology Foundation STW (project numbers 11,300 and 11,185), which is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.

Many thanks to all students and colleague researchers involved in the development of the vario-scale tGAP concepts: Vincent Schenkelaars, Judith van Putten, Tinghua Ai, Maarten Vermeij, Arjen Hofman, Arta Dilo, Marian de Vries and Jan-Henrik Haunert. Thanks to Wilko Quak, Edward Verbree, and Rod Thompson for a critical review of parts of draft version of this text. Finally, authors would like to thank the editors of this book for the initiative and for, together with the anonymous reviewers, providing many constructive suggestions on the earlier versions of this chapter. Special thanks to William Mackaness for his meticulous English proof reading and spotting unclear sections. All comments were of great help, but all (remaining) errors are the sole fault of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter van Oosterom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Oosterom, P., Meijers, M., Stoter, J., Ĺ uba, R. (2014). Data Structures for Continuous Generalisation: tGAP and SSC. In: Burghardt, D., DuchĂŞne, C., Mackaness, W. (eds) Abstracting Geographic Information in a Data Rich World. Lecture Notes in Geoinformation and Cartography(). Springer, Cham. https://doi.org/10.1007/978-3-319-00203-3_4

Download citation

Publish with us

Policies and ethics