Skip to main content

Ultrafast Coherent Control of Individual Electron Spin Qubits

  • Chapter
  • First Online:
Book cover Towards Solid-State Quantum Repeaters

Part of the book series: Springer Theses ((Springer Theses))

  • 769 Accesses

Abstract

In this chapter, we shall derive how ultrafast optical control can be used in combination with Larmor precession for full SU(2) control of a single quantum dot electron spin. Such ultrafast electron spin control was first reported in Refs. [1–3]. In combination with accurate timing control over the optical fields used to realize this SU(2) control, arbitrary pulse (control) patterns can be applied to the spin [3]. As we will show in Sect. 3.3.2, such pulse sequences can be used to overcome the effects of slowly varying Larmor precession due to variations in the spin’s solid state environment. As a particular example, we will study the effects of the hyperfine interaction between an electron spin and the nuclear spins inside the quantum dot [4–7] – the latter will be discussed in detail in Sect. 3.3.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For | Ω1(t) | ≠ | Ω2(t) | , there is a net difference in the energy of both ground states, which adds to the energy splitting δ e . In the case of a spin qubit, as we shall derive later, this corresponds to a net magnetic field being applied, parallel to the field causing the Zeeman splitting in the first place.

  2. 2.

    The distribution of quantum dot emission wavelengths reflects their size- and strain distribution due to the self-assembled growth process. In practice, this distribution peaks around 880 nm, and tails off very slowly towards 950–1,000 nm. For quantum dots in the 940 nm range, as were used for the spin echo experiments described in Sect. 3.3.2, there is often less than one quantum dot resonant with the cavity. For the more blue-shifted dots used for spin-photon entanglement verification in Sect. 7, the overall dot density was reduced, yet the cavity is closer to the peak of the distribution. Therefore, typically, more than one quantum dot could be found resonant with the cavity. However, their spectral inhomogeneity still allows for selective excitation of and collection from one particular dot.

  3. 3.

    Higher order terms, due to e.g. dipolar coupling to both electron spin and other nuclear spins do exist, and give rise to some slow dynamics on milliseconds- to seconds timescales, as will be shown in Sect. 3.3.2, but for the current analysis, those can be temporarily ignored.

  4. 4.

    As the (mixed-in) heavy-holes form an effective two-level system, such re-mapping is valid for the low temperatures in typical experiments: the energy separation from the next higher states is typically several meV.

  5. 5.

    Rather: approximately observe the single-shot dynamics in a multishot experiment. The spin-echo results in slightly different dynamics for the nuclear spin bath than true, single-shot free induction decay, and therefore, slightly different decoherence effects. We refer to Refs. [5, 18] and [26] for further details.

References

  1. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 320:349, 2008.

    Article  ADS  Google Scholar 

  2. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature, 456:218, 2008.

    Article  ADS  Google Scholar 

  3. D. Press, K. De Greve, P. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto. Ultrafast optical spin echo in a single quantum dot. Nat. Photonics, 4:367, 2010.

    Article  ADS  Google Scholar 

  4. T. D. Ladd, D. Press, K. De Greve, P. McMahon, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto. Pulsed nuclear pumping and spin diffusion in a single charged quantum dot. Phys. Rev. Lett., 105:107401, 2010.

    Article  ADS  Google Scholar 

  5. W. M. Witzel and S. Das Sarma. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B, 74:035322, 2006.

    Article  ADS  Google Scholar 

  6. X. Xu et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature, 459(4):1105, 2009.

    Google Scholar 

  7. C. Latta et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nat. Phys., 5:758, 2009.

    Article  Google Scholar 

  8. S. M. Clark, K-M. C. Fu, T. D. Ladd, and Y. Yamamoto. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses. Phys. Rev. Lett., 99:040501, 2007.

    Google Scholar 

  9. K. De Greve, P. L. McMahon, D. Press, T. D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel, and Y. Yamamoto. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys., 7:872, 2011.

    Article  Google Scholar 

  10. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

    Google Scholar 

  11. J Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom. Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot. Science, 314:1916, 2006.

    Google Scholar 

  12. M. Atatüre, J. Dreiser, A. Badolato, and A. Imamoglu. Observation of Faraday rotation from a single confined spin. Nat. Phys., 3:101, 2007.

    Article  Google Scholar 

  13. A. N. Vamivakas, C.-Y. Lu, C. Matthiesen, Y. Zhao, S. Fält, A. Badolato, and M. Atatüre. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature, 467:297, 2010.

    Article  ADS  Google Scholar 

  14. X. Xu, Y. Wu, B. Sun, Q. Huang, Jun Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett., 99:097401, 2007.

    Google Scholar 

  15. K.-M. C. Fu et al. Ultrafast control of donor-bound electron spins with single detuned optical pulses. Nat. Phys., 4:780, 2008.

    Article  Google Scholar 

  16. V. N. Golovach, A. Khaetskii, and D. Loss. Phonon-Induced Decay of the Electron Spin in Quantum Dots. Phys. Rev. Lett., 93:016601, 2004.

    Article  ADS  Google Scholar 

  17. D. V. Bulaev and D. Loss. Spin decoherence and relaxation of holes in a quantum dot. Phys. Rev. Lett., 95:076805, 2005.

    Article  ADS  Google Scholar 

  18. W. A. Coish and D. Loss. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B, 70:195340, 2004.

    Article  ADS  Google Scholar 

  19. T. D. Ladd, D. Press, K. De Greve, P. McMahon, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto. Nuclear feedback in a single quantum dot under pulsed optical control. arXiv:1008.0912v1.

    Google Scholar 

  20. A. Greilich et al. Nuclei-induced frequency focusing of electron spin coherence. Science, 317(4):1896, 2007.

    Google Scholar 

  21. I. T. Vink et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nat. Phys., 5:764–768, 2009.

    Article  Google Scholar 

  22. L. Allen and J. H. Eberly. Optical Resonance and Two-level Atoms. Dover books on Physics, 1987.

    Google Scholar 

  23. Greilich, A et al. Mode locking of electron spin coherences in singly charged quantum dots. Science, 313:341, 2006.

    Article  ADS  Google Scholar 

  24. A. Messiah. Quantum mechanics. Dover, 1999.

    Google Scholar 

  25. J. Fischer and D. Loss. Hybridization and Spin Decoherence in Heavy-Hole Quantum Dots. Phys. Rev. Lett., 105:266603, 2010.

    Article  ADS  Google Scholar 

  26. R.-B. Liu, W. Yao, and L. J. Sham. Control of electron spin decoherence caused by electron-nuclear spin dynamics in a quantum dot. New J. Phys., 9:226, 2007.

    Article  ADS  Google Scholar 

  27. E. L. Hahn. Spin Echoes. Phys. Rev., 80:580, 1950.

    Article  ADS  MATH  Google Scholar 

  28. H. Y. Carr and E. M. Purcell. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev., 94:630, 1954.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Greve, K. (2013). Ultrafast Coherent Control of Individual Electron Spin Qubits. In: Towards Solid-State Quantum Repeaters. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00074-9_3

Download citation

Publish with us

Policies and ethics