Skip to main content

Crystals, Critical Fields, Collision Points, and a QED Analogue of Hawking Radiation

  • Chapter
  • First Online:
  • 1728 Accesses

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

Abstract

During the penetration of a crystal close to a crystallographic direction, the trajectory of the penetrating particle—due to the sequence of binary encounters—becomes indistinguishable from the trajectory obtained from ‘smearing’ (averaging) the charges along the string or plane, see Fig. 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.A. Doyle, P.S. Turner, Relativistic Hartree-Fock X-ray and electron scattering factor. Acta Crystallogr. Sect. A 24, 390–397 (1968)

    Article  ADS  Google Scholar 

  2. E. Bonderup, J.U. Andersen, R.H. Pantell, Channeling radiation. Ann. Rev. Nucl. Part. Sci. 33, 453–504 (1983)

    Article  ADS  Google Scholar 

  3. J. Bak, J.A. Ellison, B. Marsh, F.E. Meyer, O. Pedersen, J.B.B. Petersen, E. Uggerhøj, K. Østergaard, S.P. Møller, A.H. Sørensen, M. Suffert, Channeling radiation from 2–55 GeV/c electrons and positrons: (i). planar case. Nucl. Phys. B 254, 491–527 (1985)

    Google Scholar 

  4. A.H. Sørensen, Channeling, bremsstrahlung and pair creation in single crystals. NATO ASI Ser. 255, 91–118 (1991)

    Article  Google Scholar 

  5. E. Uggerhøj, U.I. Uggerhøj, Strong crystalline fields–a possibility for extraction from the LHC. Nucl. Instrum. Methods Phys. Res., Sect. B 234(1–2), 31–39 (2005), Relativistic Channeling and Related Coherent Phenomena in Strong Fields

    Google Scholar 

  6. Particle Data Group, C. Amsler, M. Doser, M. Antonelli et al., Review of particle physics, Phys. Lett. B 667, 1–5 (2008)

    Google Scholar 

  7. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. F. Sauter, Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931)

    Article  ADS  Google Scholar 

  9. F. Sauter, Zum “Kleinschen Paradoxon”. Z. Phys. 73, 547–552 (1931)

    ADS  Google Scholar 

  10. O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys. 53, 157–165 (1929)

    Article  ADS  MATH  Google Scholar 

  11. M. Born, L. Infeld, Foundations of the new field theory. Proc. R. Soc. Lond. A 144, 425–451 (1934)

    Article  ADS  Google Scholar 

  12. R.P. Feynman, A Relativistic cut-off for classical electrodynamics. Phys. Rev. 74, 939–946 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A.I. Nikishov, V.I. Ritus, Quantum processes in the field of a plane electromagnetic wave and in a constant field. Zh. Eksp. Teor. Fiz. 46, 776–796 (1964)

    MathSciNet  Google Scholar 

  14. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Relativistic Quantum Theory (Elsevier, UK, 1971)

    Google Scholar 

  15. L.I. Schiff, Quantum effects in the radiation from accelerated relativistic electrons. Am. J. Phys. 20, 474–478 (1952)

    Article  ADS  MATH  Google Scholar 

  16. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  17. J. Schwinger, The quantum correction in the radiation by energetic accelerated electrons. Proc. Natl. Acad. Sci. USA 40, 132–136 (1954)

    Article  ADS  MATH  Google Scholar 

  18. W. Tsai, A. Yildiz, Motion of an electron in a homogeneous magnetic field–modified propagation function and synchrotron radiation. Phys. Rev. D 8, 3446–3460 (1973)

    Article  ADS  Google Scholar 

  19. W. Tsai, Magnetic bremsstrahlung and modified propagation function. Spin-0 charged particles in a homogeneous magnetic field. Phys. Rev. D 8, 3460–3469 (1973)

    Google Scholar 

  20. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998)

    Book  Google Scholar 

  21. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Quantum effects in radiation emitted by ultrahigh energy electrons in aligned crystals. Phys. Lett. A 114, 511–515 (1986)

    Article  ADS  Google Scholar 

  22. A. Belkacem, G. Bologna, M. Chevallier, N. Cue, M.J. Gaillard, R. Genre, J. Kimball, R. Kirsch, B. Marsh, J.P. Peigneux, J.C. Poizat, J. Remillieux, D. Sillou, M. Spighel, C.R. Sun, Strong field interactions of high energy electrons and photons in ge crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 33, 1–10 (1988)

    Google Scholar 

  23. K. Kirsebom, Y.V Kononets, U. Mikkelsen, S.P. Møller, E. Uggerhøj, T. Worm, K. Elsener, C. Biino, N. Doble, S. Ballestrero, P. Sona, R.O. Avakian, K.A. Ispirian, S.P. Taroian, S.H. Connell, J.P.F. Sellschop, Z.Z. Vilakazi, R. Moore, M.A. Parker, A. Baurichter, V.M. Strakhovenko, Radiation emission and its influence on the motion of multi-GeV electrons and positrons incident on a single diamond crystal. Nucl. Instr. Meth. B 174, 274–296 (2001)

    Google Scholar 

  24. V.M. Katkov, V.N. Baier, Coherent and incoherent radiation from high-energy electron and the lpm effect in oriented single crystal. Phys. Lett. A 353, 91–97 (2006)

    Article  ADS  Google Scholar 

  25. P. Chen, K. Yokoya, Field-gradient effect in quantum beamstrahlung. Phys. Rev. Lett. 61, 1101–1104 (1988)

    Article  ADS  Google Scholar 

  26. T. Himel, J. Siegrist, Quantum effects in linear collider scaling laws, SLAC-PUB-3572, 1–7 (1985)

    Google Scholar 

  27. K. Yokoya, Quantum correction to beamstrahlung due to the finite number of photons. Nucl. Instr. Meth. A 1–16, 251 (1986)

    Google Scholar 

  28. R.J. Noble, Beamstrahlung from colliding electron-positron beams with negligible disruption. Nucl. Instr. Meth. A 256, 427–433 (1987)

    Article  ADS  Google Scholar 

  29. P. Chen, V.I. Telnov, Coherent pair creation in linear colliders. Phys. Rev. Lett. 63, 1796–1799 (1989)

    Article  ADS  Google Scholar 

  30. R. Blankenbecler, S.D. Drell, N. Kroll, Pair production from photon-pulse collisions. Phys. Rev. D 40, 2462–2476 (1989)

    Article  ADS  Google Scholar 

  31. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Radiation from relativistic particles colliding in a medium in the presence of an external field. Zh. Eksp. Teor. Fiz. 94, 125–139 (1988)

    Google Scholar 

  32. R. Blankenbecler, S.D. Drell, Quantum treatment of beamstrahlung. Phys. Rev. D 36, 277–288 (1987)

    Article  ADS  Google Scholar 

  33. A.V. Solov’yov, A. Schäfer, C. Hofmann, Quasiclassical approximation for the beamstrahlung process. Phys. Rev. E 47, 2860–2867 (1993)

    Article  ADS  Google Scholar 

  34. A.V. Solov’yov, A. Schäfer, Pair creation by photons in the field of an electron or positron pulse of high density. Phys. Rev. E 48, 1404–1409 (1993)

    Article  ADS  Google Scholar 

  35. R. Blankenbecler, S.D. Drell, Quantum beamstrahlung: Prospects for a photon-photon collider. Phys. Rev. Lett. 61, 2324–2327 (1988)

    Article  ADS  Google Scholar 

  36. P.C.W. Davies, Thermodynamics of black holes. Rep. Prog. Phys. 41, 1313–1355 (1978)

    Article  ADS  Google Scholar 

  37. W.G. Unruh, Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  38. P.C.W. Davies, Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975)

    Article  ADS  Google Scholar 

  39. K.A. Ispirian, S.M. Darbinian, A.T. Margarian, New mechanism for Unruh radiation of channeled particles (1989)

    Google Scholar 

  40. K.T. McDonald, Hawking-Unruh Radiation and Radiation of a Uniformly Accelerated Charge (California, Quantum Aspects of Beam Physics, 1998), p. 643

    Google Scholar 

  41. V.N. Baier, Radiative polarization of electrons in storage rings. Usp. Fiziol. Nauk 105, 441–478 (1972)

    Article  Google Scholar 

  42. V.N. Baier, V.M. Katkov, Electroproduction of electron-positron pair in oriented crystal at high energy. Phys. Lett. A 373, 1874–1879 (2009)

    Article  ADS  MATH  Google Scholar 

  43. H.C. Rosu, Unruh Effect as Particular Frenet-Serret Vacuum Radiation and Detection Proposals (Quantum Aspects of Beam Physics, California, 2004), pp. 164–175

    Google Scholar 

  44. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)

    Google Scholar 

  45. U.I. Uggerhøj, Relativistic ps\(^-\) and ps. Phys. Rev. A 73, 052705 (2006)

    Article  ADS  Google Scholar 

  46. B. Müller, W. Greiner, J. Rafelski, Interpretation of external fields as temperature. Phys. Lett. A 63, 181–183 (1977)

    Article  ADS  Google Scholar 

  47. B. Müller, W. Greiner, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985)

    Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge the initiatives of Profs. Greiner, Newman and Vilakazi to arrange not only an exceptionally interesting symposium with inspiring delegates from many subjects and countries, but also for arranging it in a very exciting environment. Finally, I wish to thank Dr. Weber and his family and staff at Makutsi Safari Farm for their dedication to making the symposium the success it was.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik I. Uggerhøj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uggerhøj, U.I. (2013). Crystals, Critical Fields, Collision Points, and a QED Analogue of Hawking Radiation. In: Greiner, W. (eds) Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00047-3_33

Download citation

Publish with us

Policies and ethics