Skip to main content

The mode-sensing hypothesis: Matching sensors, actuators and flight dynamics

  • Chapter
Frontiers in Sensing

Abstract

Here we elaborate upon the recent hypothesis that the sensory systems of insects are matched to their flight dynamics, such that they are configured to make or encode measurements within a modal coordinate system. This hypothesis is inspired by several distinctive organizational principles of insect sensory systems: namely, that insects appear to be configured a) to sense relative, rather than absolute, quantities; b) to make measurements in highly non-orthogonal axis systems; and c) to fuse sensory inputs from different modalities prior to using them as feedback to the actuators. Having elaborated upon the hypothesis itself and considered the functional advantages of the resulting control architecture, we discuss some of the physiological details of how the requisite coordinate systems might in practice be set up in the fly visual system. We also provide a mathematical framework for testing the quantitative match between sensory system and flight dynamics in the specific context of the visual systems of flies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12: 297–306

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J Comput Neurosci 2: 5–1837

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188: 419–437

    Article  CAS  Google Scholar 

  • Buchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp. 561–621

    Chapter  Google Scholar 

  • Dahmen H, Franz M, Krapp HG (2001) Extracting ego-motion from optic flow: limits of accuracy and neuronal filters. In: Zanker JM, Zeil J (eds) Processing visual motion in the real world — A survey of computational, neural and ecological constraints. Springer Verlag, Berlin, Heidelberg, New York, pp. 143–168

    Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. Rev Oculomot Res 5: 53–77

    PubMed  CAS  Google Scholar 

  • Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha A-K (2002) Neuronal encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci 25: 94–100

    Article  Google Scholar 

  • Faruque I, Humbert JS (2010). Dipteran insect flight dynamics: Part 1: Longitudinal motions about hover. J Theo Biol 264: 538–552

    Article  Google Scholar 

  • Faruque I, Humbert JS (2010). Dipteran insect flight dynamics: Part 2: Lateral-directional motions about hover. J Theo Biol 265: 306–313

    Article  Google Scholar 

  • Franz MO, Krapp HG (2000) Wide-field, motionsensitive neurons and optimal matched filters for optic flow. Biol Cybern 83: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Franz MO, Chahl JS, Krapp HG (2004) Insect inspired estimation of self-motion. Neural Comput 16: 2245–2260

    Article  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Goodman L (1981) Organisation and physiology of the insect dorsal ocellar system. In: Autrum H (ed) Handbook of sensory physiology, Volume VII/6 C, Springer Verlag, Berlin, pp. 201–181

    Google Scholar 

  • Haag J, Borst A (2001) Recurrent network interactions underlying flow-field selectivity of visual interneurons. J Neuosci 21: 5685–5692

    CAS  Google Scholar 

  • Haag J, Borst A (2004) Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nat Neurosci 7: 628–634

    Article  PubMed  CAS  Google Scholar 

  • Haag J, Wertz A, Borst A (2007) Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J Neurosci 27: 1992–2000

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9: 419–423

    Article  Google Scholar 

  • Harris RA, O’Carroll DC, Laughlin SB (2000) Contrast gain reduction in fly motion adaptation. Neuron 28: 595–606

    Article  PubMed  CAS  Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly I. The horizontal cells — structure and signals. Biol Cybern 45: 143–156

    Article  Google Scholar 

  • Hausen K (1993) Decoding of retinal image flow in insects. Rev Oculomot Res 5: 203–235

    PubMed  CAS  Google Scholar 

  • Heide G (1983). Neural mechanism of flight control in Diptera. In: Nachtigall W (ed) BIONA report, Vol. 2, Akad Wiss Mainz, Gustav Fischer, Stuttgart, New York, pp. 35–52

    Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol A 149: 179–193

    Article  Google Scholar 

  • Hengstenberg R (1991) Gaze control in the blowfly Calliphora: A multisensory two-stage integration process. The Neurosciences 3: 19–29

    Article  Google Scholar 

  • Hengstenberg R (1993) Multisensory control in insect oculomotor systems. Rev Oculomot Res 5: 285–298

    PubMed  CAS  Google Scholar 

  • Huston SJ, Krapp HG (2008) Visuomotor transformation in the fly gaze stabilization system. PLoS Biol 6: 1468–1478

    Article  CAS  Google Scholar 

  • Huston SJ, Krapp HG (2009) Non-linear integration of visual and haltere inputs in fly neck motor neurons. J Neurosci 29: 13 097–13 105

    Article  CAS  Google Scholar 

  • Karmeier K, Tabor R, Egelhaaf M, Krapp HG (2001) Early visual experience and the receptive field organization of optic flow processing interneurons in the fly motion pathway. Vis Neurosci 18: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Karmeier K, Krapp HG, Egelhaaf M (2003) Robustness of the tuning of fly visual interneurons to rotatory optic flow. J Neurophysiol 90: 1626–1634

    Article  PubMed  Google Scholar 

  • Karmeier K, Krapp HG, Egelhaaf M (2005) Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. J Neurophysiol 94: 2182–2194

    Article  PubMed  Google Scholar 

  • Karmeier K, van Hateren JH, Kern R, Egelhaaf M (2006) Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. J Neurophysiol 96: 1602–1614

    Article  PubMed  CAS  Google Scholar 

  • Koenderink J, van Doorn A (1987) Facts on optic flow. Biol Cybern 56: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384: 447–468

    Article  Google Scholar 

  • Krapp HG, Hengstenberg B, Henstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79: 1902–1917

    PubMed  CAS  Google Scholar 

  • Krapp HG (2000) Neuronal matched filters for optic flow processing in flying insects. Int Rev Neurobiol 44: 93–120

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg R, Egelhaaf M (2001) Binocular input organization of optic flow processing interneurons in the fly visual system. J Neurophysiol 85: 724–734

    PubMed  CAS  Google Scholar 

  • Krapp HG, Wicklein M (2008) Central processing of visual information in insects. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G. (eds) The senses: A comprehensive reference. Vol. 1, Vision I, Masland R, Albright TD (eds) Academic Press, San Diego, pp. 131–204

    Chapter  Google Scholar 

  • Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M (2005) On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway. J Neurosci 25: 6435–6448

    Article  PubMed  CAS  Google Scholar 

  • Longden KD, Krapp HG (2009) State-dependent receptive field properties of optic flow processing interneurons. J Neurophysiol 102: 3606–3618

    Article  PubMed  Google Scholar 

  • Nalbach G (1994) Extremely non-orthogonal axes in a sense organ for rotation: behavioural analysis of the dipteran haltere system. Neurosci 61: 155–163

    Article  Google Scholar 

  • Parsons MM, Krapp HG, Laughlin SB (2006) A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. J Exp Biol 209: 4464–4474

    Article  PubMed  Google Scholar 

  • Parsons MM, Krapp HG, Laughlin SB (2010) Sensor fusion in identified visual interneurons. Curr Biol 20: 624–628

    Article  PubMed  CAS  Google Scholar 

  • Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG (2000) Arrangement of optical axes and the spatial resolution in the compound eye of the female blowfly. J Comp Physiol A 186: 737–746

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communications. Wiley, New York, pp. 303–317

    Google Scholar 

  • Schuling FH, Mastebroek HAK, Bult R, Lenting BPM (1989) Properties of elementary movement detectors in the fly Calliphora erythrocephala. J Comp Physiol A 165: 179–192

    Article  Google Scholar 

  • Simmons PJ, Jian S, Rind FC (1993) Responses in vivo to light signals by large, 2nd-order ocellar neurons of the blowfly, Calliphora erythrocephala. J Physiol Lond 473: 244–244

    Google Scholar 

  • Srinivasan MV, Zhang S, Chahl JS (2001) Landing strategies in honeybees, and possible applications to autonomous airborne vehicles. Biol Bull, 200: 216–221

    Article  PubMed  CAS  Google Scholar 

  • Stevens BL, Lewis FL (2003) Aircraft control and simulation, 2nd edn. Hoboken, Wiley, New York

    Google Scholar 

  • Tarokh M (1992) Measures of controllability, observability, and fixed modes. IEEE Trans Autom Control 37: 1268–1273

    Article  Google Scholar 

  • Taylor GK, Thomas ALR (2003) Dynamic flight stability in the desert locust Schistocerca gregaria. J Exp Biol 206: 2803–2829

    Article  PubMed  Google Scholar 

  • Taylor GK, Krapp HG (2007) Sensory systems and flight stability: What do insects measure and why? Adv Insect Physiol 34: 231–316

    Article  Google Scholar 

  • Wertz A, Gaub B, Plett J, Haag J, Borst A (2009) Robust coding of ego-motion in descending neurons of the fly. J Neurosci 29: 14993–15000

    Article  PubMed  CAS  Google Scholar 

  • White JA, Rubenstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci 23: 131

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Krapp, H.G., Taylor, G.K., Humbert, J.S. (2012). The mode-sensing hypothesis: Matching sensors, actuators and flight dynamics. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_7

Download citation

Publish with us

Policies and ethics