Skip to main content

Psychrophilic microorganisms as important source for biotechnological processes

  • Chapter
Adaption of Microbial Life to Environmental Extremes

Abstract

The major parts of Earth’s environments are cold and have temperatures below 5°C (Gounot 1999; Russell and Cowan 2005). About 70% of the freshwater is ice and about 14% from the Earth’s biosphere is represented by terrestrial and aquatic polar areas (Priscu and Christner 2004). The depth of the oceans, the poles, and high mountains are the most important cold regions on Earth (Russell and Cowan 2005). Global ice, for example, covers 6.5 million km2 which increases to 14.4 million km2 in wintertime (Perovich et al. 2002). Here we can meet representatives from all domains of the living world. Two categories of microorganisms were discovered in such cold environments. First, the psychrophiles with an optimum growth temperature of about 15°C or even less, which cannot grow above 20°C (Moyer and Morita 2007); second, the psychrotolerants with an optimum growth temperature of 20–30°C, which are able to grow and exhibit activity at temperatures close to the freezing point of water (Madigan and Jung 2003). The lowest temperature for life’s activities is −20°C under certain defined conditions (Rivkina et al. 2000; Gilichinsky 2002; D’Amico et al. 2006); others consider the temperature limits for reproduction as −12°C and for metabolism as −20°C (Bakermans 2008). Colwellia psychrerythraea strain 34H is motile at −10°C, as observed by transmitted light microscopy (Junge et al. 2003). Psychrophilic microorganisms are dominant in permanently cold environments such as Antarctic waters and have important roles in the biogeochemical cycles in the polar zones (Helmke and Weyland 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM (1998) Antarctic ice sheet as a model in search of life on other planets. Adv Space Res 22:363–368

    Article  CAS  Google Scholar 

  • Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035

    Article  PubMed  CAS  Google Scholar 

  • Amoresano A, Andolfo A, Corsaro MM, Zocchi I, Petrescu I, Gerday I, Marino G (2000) Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology 10:451–458

    Article  PubMed  CAS  Google Scholar 

  • Andersson RE, Hedlund CB, Jonsson U (1979) Thermal inactivation of a heat-resistant lipase produced by the psychrotrophic bacterium Pseudomonas fluorescens. J Dairy Sci 62:361–367

    Article  PubMed  CAS  Google Scholar 

  • Araújo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26:332–349

    Article  CAS  Google Scholar 

  • Auborn KJ, Fan S, Rosen EM, Goodwin L, Chandraskaren A, Williams DE, Chen D, Carter TH (2003) Indole-3-carbinol is a negative regulator of estrogen. J Nutr 133(Suppl):2470S–2475S

    PubMed  CAS  Google Scholar 

  • Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to lowtemperature growth. Appl Environ Microbiol 76:2304–2312

    Article  PubMed  CAS  Google Scholar 

  • Ayub ND, Tribelli PM, Lopez N (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation. Extremophiles 13:59–66

    Article  PubMed  CAS  Google Scholar 

  • Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Craig CS, Burton SG, Cowan DA (2008) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576

    Article  CAS  Google Scholar 

  • Bae E, Phillips GN Jr (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279:28202–28208

    Article  PubMed  CAS  Google Scholar 

  • Bahrim G, Negoita TG (2004) Effects of inorganic nitrogen and phosphorous sources on hydrolase complex production by the selected Bacillus subtilis Antarctic strain. Rom Biotechnol Lett 9: 1925–1932

    CAS  Google Scholar 

  • Bahrim GE, Scântee M, Negoita TG (2007) Biotechnological conditions of amylase and protease complex production and utilization involving filamentous bacteria. In: Annals Univers “Dunărea de Jos” Galati, Fasc VI Food Technol, pp 76–81

    Google Scholar 

  • Bakermans C (2008) Limits for microbial life at subzero temperatures. In: Margesin R, Schinner R, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 17–28

    Chapter  Google Scholar 

  • Beg QK, Kapoor M, Mhajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications — a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  • Benešova E, Markova M, Kralova B (2005) Alpha glucosidase and beta glucosidase from psychrophilic strain Arthrobacter sp. C2-2. Czech J Food Sci 23:116–120

    Google Scholar 

  • Bialkowska AM, Cieslinski H, Niowakowska KM, Kur J, Turkievich M (2009) A new beta-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification, characterization. Arch Microbiol 191:825–835

    Article  PubMed  CAS  Google Scholar 

  • Blees J, Wenk C, Niemann C, Schubert C, Zopfi J, Veronesi M, Simona M, Lehmann M (2010) The isotopic signature of methane oxidation in a deep south-alpine lake Geophysical Research Abstracts 12, EGU2010-788

    Google Scholar 

  • Bowman JP (2008) Genomic analysis of psychrophilic prokaryotes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 265–284

    Chapter  Google Scholar 

  • Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    Article  PubMed  CAS  Google Scholar 

  • McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω 3) Int J Syst Bacteriol 48:1171–1180

    Article  Google Scholar 

  • Bozal N, Montes MJ, Tudela E, Jimenez F, Guinea J (2002) Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205

    PubMed  CAS  Google Scholar 

  • Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 389–428

    Chapter  Google Scholar 

  • Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii. Microbial Ecol 47:300–304

    Article  CAS  Google Scholar 

  • Brenchley JE (1996) Psychrophilic microorganisms and their cold-active enzymes. J Ind Microbiol Biotechnol 17:432–437

    Article  CAS  Google Scholar 

  • Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air-and dustborne and Antarctic, orange pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R (2006) Cold adapted Archaea. Nat Rev Microbiol 4:331–343

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R, Siddiqui KS (2004) Cold-adapted enzymes. In: Paney A, Webb C, Socol CR, Larroche C (eds) Enzyme technology. Asia Tech Publishers, New Delhi, pp 615–638

    Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008a) Candida antarctica lipase B chemically immobilized on epoxy-activated micro-and nanobeads: catalysts for polyester synthesis. Biomacromolecules 9:463–470

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Miller ME, Gross RA (2008b) Immobilization of Candida antarctica lipase B on porous polystyrene resins: protein distribution and activity. In: Polymer biocatalysis and biomaterials II, ACS symposium series, vol 999. American Chemical Society, Washington, DC, pp 165–177

    Chapter  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631–642

    PubMed  CAS  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003a) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003b) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584

    Article  CAS  Google Scholar 

  • Christner BC, Skidmore ML, Priscu JC, Tranter M, Foreman C (2008) Bacteria in subglacial environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 51–71

    Chapter  Google Scholar 

  • Cohen Z (1990) The production potential of eicosapentaenoic acid and arachidonic acid of the red algae Porphyridium cruentum. J Am Oil Chem Soc 67:916–920

    Article  CAS  Google Scholar 

  • Collins T, Dutron A, Georis J, Genot B, Dauvrin T, Arnaut F, Gerday C, Feller G (2006) Use of glycoside hydrolase family 8 xylanases in baking. J Cereal Sci 43:79–84

    Article  CAS  Google Scholar 

  • Collins T, Roulling F, Piette F, Marx JC, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 211–228

    Chapter  Google Scholar 

  • Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina del Rio T, Hammon N, Israni S, Dalin E, Tice H, Pitluck S, Fredrickson JK, Kolker E, McCuel LA, DiChristina T, Nealson KH, Newman D, Tiedje JM, Zhou J, Romine MF, Culley DE, Serres M, Chertkov O, Brettin T, Bruce D, Han C, Tapia R, Gilna P, Schmutz J, Larimer F, Land M, Hauser L, Kyrpides N, Mikailova N, Richardson P (2006) Complete sequence of Shewanella frigidimarina NCIMB 400. Submitted (Aug. Sept. 2006). Released 09/14/2006 by the DOE Joint Genome Institute

    Google Scholar 

  • Cotârlet M, Negoita TG, Bahrim G, Stougaard P (2008) Screening of polar streptomycetes able to produce cold-active hydrolytic enzymes using common and chromogenic substrates. Rom Biotechnol Lett 13:69–80 [special issue, edited for Int Conf Ind Microbiol Appl Biotechnol]

    Google Scholar 

  • Cowan DA, Casanueva A (2007) Stability of ATP in Antarctic mineral soils. Polar Biol 30:1599–1603

    Article  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Article  PubMed  CAS  Google Scholar 

  • De Prada P, Loveland-Curtze J, Brenchley JE (1996) Production of two extracellular alkaline phosphatases by a psychrophilic Arthrobacter strain. Appl Environ Microbiol 62:3732–3738

    PubMed  Google Scholar 

  • Deming JW (2007) Life in ice formations at very cold temperatures. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 133–145

    Google Scholar 

  • Di Prisco G (2007) Lake Vostok and subglacial lakes of Antarctica: do they host life? In: Gerday C, Glansdorff F (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 145–154

    Google Scholar 

  • Doaa Mahmoud AR, Wafaa Helmy A (2009) Application of cold-active dextranase in dextran degradation and isomaltotriose synthesis by micro-reaction technology. Aust J Basic Appl Sci 3:3808–3817

    CAS  Google Scholar 

  • Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11:211–216

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold-adaptation. Cell Mol Life Sci 53:830–841

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Le Bussy O, Gerday C (1998) Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant a-amylase. Appl Environ Microbiol 64: 1163–1165

    PubMed  CAS  Google Scholar 

  • Finster K (2008) Anaerobic bacteria and archaea in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 103–119

    Chapter  Google Scholar 

  • Flocco CG, Newton C, Gomes M, MacCormack W, Smalla K (2009) Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the maritime Antarctic. Environ Microbiol 11:700–714

    Article  PubMed  CAS  Google Scholar 

  • Frisvad JC (2008a) Cold adapted fungi as source of valuable Metabolites. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 381–388

    Chapter  Google Scholar 

  • Frisvad JC (2008b) Fungi in cold environment. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 137–156

    Chapter  Google Scholar 

  • Galante YM, Formantici C (2003) Enzyme applications in detergency and in manufacturing industries. Curr Org Chem 7:1399–1422

    Article  CAS  Google Scholar 

  • Ganzert L, Jurgens G, Münster U, Wagner D (2007) Methanogenic communities in permafrostaffected soils of the Laptev Sea Coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59:476–488

    Article  PubMed  CAS  Google Scholar 

  • Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic and thermophilic DNA ligases. J Biol Chem 278:37015–37023

    Article  PubMed  CAS  Google Scholar 

  • Gesheva V (2009) Distribution of psychrophilic microorganisms in soils of Terra Nova Bay and Edmonson Point, Victoria Land and their biosynthetic capabilities. Polar Biol 32:1287–1291

    Article  Google Scholar 

  • Gianese G, Argos P, Pascarella S (2001) Structural adaptation of enzymes to low temperatures. Prot Eng 14:141–148

    Article  CAS  Google Scholar 

  • Giaquinto L, Curmi PMG, Siddiqui KS, Poljak A, DeLong E, DasSarma S, Cavicchioli R (2007) Structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky DA (2002) Permafrost. In: Bitton G (ed) Encyclopedia of environmental microbiology. John Wiley & Sons, New York, pp 2367–2385

    Google Scholar 

  • Gilichinsky D, Vishnivetskaya T, Petrova M, Spirina E, Mamkyn V, Rivkina E, (2008) Bacteria in Permafrost. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 83–102

    Chapter  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Goto S, Sugiyama J, Iizuka HA (1969) A taxonomical study of Antarctic yeasts. Mycologia 61:748–774

    Article  PubMed  CAS  Google Scholar 

  • Gounot AM (1999) Microbial life in permanently cold soils. In: Margesin R, Schinner F (eds) Coldadapted organisms. Springer, Berlin, Heidelberg, New York, pp 3–15

    Chapter  Google Scholar 

  • Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a coldadapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13:763–768

    Article  PubMed  CAS  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  PubMed  CAS  Google Scholar 

  • Grzymski JJ, Carter BJ, DeLong EF, Feldman RA (2006) Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl Environ Microbiol 72:1532–1541

    Article  PubMed  CAS  Google Scholar 

  • Guffogg SP, Thomas-Hall S, Holloway P, Watson K (2004) A novel psychrotolerant member of the hymenomycetous yeasts from Antarctica: Cryptococcus watticus sp. nov. Int J Syst Evol Microbiol 54:275–277

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto T (1993) Psychrophilic microorganisms from deep sea environments. Riken Rev 3:9–10

    Google Scholar 

  • Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. African J Biotechnol 9:4836–4844

    CAS  Google Scholar 

  • Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Ann Rev Microbiol 61:237–258

    Article  CAS  Google Scholar 

  • Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria — occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561

    PubMed  CAS  Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Hollibaugh JT, Lovejoy C, Murray AE (2007) Microbiology in polar ocean. Oceanography 20: 140–147

    Article  Google Scholar 

  • Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, Kawarabayasi Y, Donachie SP, Pikina A, Galperin MY, Koonin EV, Makarova KS, Omelchenko MV, Sorokin A, Wolf YI, Li QX, Keum YS, Campbell S, Denery J, Aizawa S, Shibata S, Malahoff A, Alam M (2004) Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA 101:18036–18041

    Article  PubMed  CAS  Google Scholar 

  • Hoyoux, IJ, Dubois P, Genicot S, Dubail F, Franc JM, Baise Ois E, Feller G, Gerday C (2001) Coldadapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243

    PubMed  CAS  Google Scholar 

  • Huston AL (2008) Biotechnological aspects of cold adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 347–364

    Chapter  Google Scholar 

  • Ishida Y, Tsuruta H, Tsuneta ST, Uno T, Watanabe K, Aizono I (1998) Characteristics of psychrophilic alkaline phosphatase. Biosci Biotechnol Biochem 62:2246–2250

    Article  CAS  Google Scholar 

  • Ito S, Shikata S, Ozaki K, Kawai S, Okamoto K, Inoue S, Takei A, Ohta Y, Satoh T (1989) Alkaline cellulases for laundry detergents production by Bacillus sp. KSM 635 and enzymatic properties. Agric Biol Chem 53:1275–1281

    Article  CAS  Google Scholar 

  • Ivanova EP, Gorshkova NM, Bowman JP, Lysenko AM, Zhukova NV, Sergeev AF, Mikhailov VV, Nicolau DV (2004) Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int J Syst Evol Microbiol 54:1083–1087

    Article  PubMed  CAS  Google Scholar 

  • Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review. Cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:39–48

    Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Eicken, H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69:4282–4284

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen AH, Dopson M, Karnachuk O, Tuovinen OH, Puhakka JA (2008) Biological iron oxidation and sulfate reduction in the treatment of acid mine drainage at low temperatures. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 429–454

    Chapter  Google Scholar 

  • Kalyuzhnyi SV, Gladchenko M, Epov A (2004) Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions. Water Sci Technol 48:311–318

    Google Scholar 

  • Karasová P, Spiwok V, Malá Š, Králová B, Russel NJ (2002) Beta-galactosidase activity in psychrotrophic microorganisms and their potential use in food industry. Czech J Food Sci 20:43–47

    Google Scholar 

  • Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914

    Article  PubMed  CAS  Google Scholar 

  • Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA (2006) Biodiversity of methanogenic and other archaea in the permanently frozen lake Fryxwell, Antarctica. Appl Environ Microbiol 72:1662–1666

    Article  CAS  Google Scholar 

  • Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas TA, Fukuda M, Tomita F, Asano K (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73:2360–2363

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Sakala RM, Hayashidani H, Kiuchi A, Kaneuchi C, Ogawa M (2000) Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int J Syst Evol Microbiol 50:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Kawahara H (2008) Cryoprotectant and ice binding proteins. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 229–246

    Chapter  Google Scholar 

  • Khachane AN, Timmis KN, Martins dos Santos VAP (2005) Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res 33:4016–4022

    Article  PubMed  CAS  Google Scholar 

  • Kim H-R, Kim I-H, Hou CT, Kwon K-Il, Shin B-S (2010) Production of a novel cold-active lipase from Pichia lynferdii Y-7723. J Agric Food Chem 58:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, annosylerythritol lipids by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714

    Article  CAS  Google Scholar 

  • Knoblauch C, Sahm K, Jorgensen BB (1999) PsychrophiIic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bact 49:631–643

    Article  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1992) Enzymatic synthesis of acrylamide manufacturing process using microorganisms. Trends Biotechnol 10:402–408

    Article  PubMed  CAS  Google Scholar 

  • Krembs C, Deming JW (2008) The role of exopolymers in microbial adaptation to sea ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 247–286

    Chapter  Google Scholar 

  • Krishnan KP, Sinha RK, Krishna K, Nair S, Singh SM (2009) Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes Polar Biol 32:1765–1778

    Google Scholar 

  • Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N (1999) Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65:611–617

    PubMed  CAS  Google Scholar 

  • Kurihara T, Esaki N (2008) Proteomic studies of psychrophilic microrganisms. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 333–346

    Chapter  Google Scholar 

  • Kwon KK, Lee HS, Yang SH, Kim SJ (2005) Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the ‘Alphaproteobacteria’. Int J Syst Evol Microbiol 55:2033–2037

    Article  PubMed  CAS  Google Scholar 

  • Langwaldt JH, Tirola M, Puhakka JA (2008) Microbial adaptation to boreal saturated subsurface: implication in bioremediation of polychlorophenols. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: frombiodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 409–428

    Chapter  Google Scholar 

  • Larose C, Berger S, Ferrari C, Navarro E, Dommergue A, Schneider D, Vogel TM (2010) Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles 14:205–212

    Article  PubMed  Google Scholar 

  • Law BA, Goodenough PW (1995) Enzymes in milk and cheese production. In: Tucker GA, Woods LFJ (eds) Enzymes in food processing, 2nd edn. Blackie Academic and Professional, Bishopbriggs, Glasgow, UK, pp 114–143

    Chapter  Google Scholar 

  • Lee HK, Ahn MJ, Kwak SH, Song WH, Jeong BC (2003) Purification and characterization of cold active lipase from psychrotrophic Aeromonas sp. LPB 4. J Microbiol 41:22–27

    CAS  Google Scholar 

  • Lee CC, Smith MR, Accinelli R, Williams TG, Wagschal KC, Wong D, Robertson GH (2006) Isolation and characterization of a psychrophilic xylanase enzyme from Flavobacterium sp. Curr Microbiol 52:112–116

    CAS  Google Scholar 

  • Lees RS (1990) Impact of dietary fats on human health. Food Sci Technol 37:1–38

    Article  CAS  Google Scholar 

  • Lettinga G, Rebac S, van Lier J, Zeman G (1999) The potential of sub-mesophilic and/or psychrophilic anaerobic treatment of low strength wastewaters. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin, Heidelberg, pp 221–234

    Chapter  Google Scholar 

  • Lettinga G, Rebac S, Zeeman G (2001) Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 19:363–370

    Article  PubMed  CAS  Google Scholar 

  • Liebner S, Wagner D (2007) Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol 9:107–117

    Article  PubMed  CAS  Google Scholar 

  • Lo Giudice A, Bruni V, Michaud L (2007) Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Bas Microbiol 47:496–505

    Article  CAS  Google Scholar 

  • Loveland-Curtze J, Miteva V, Brenchley JE (2009) Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042m deep Greenland glacial ice. Int J Syst Evol Microbiol 59:1272–1277

    Article  PubMed  CAS  Google Scholar 

  • Loveland-Curtze J, Miteva V, Brenchley J (2010) Novel ultramicrobacterial isolates from a deep Greenland icecore represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 14:61–69

    CAS  Google Scholar 

  • Madigan MT, Jung DO (2003). Extremophiles. Worldbook Encyclopedia, Science Year 2004 Annual, pp 74–89

    Google Scholar 

  • Margesin R (2007) Alpine microorganisms: useful tools for low-temperature bioremediation. J Microbiol 45:281–285

    PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (1999) Biodegradation of organic pollutants at low temperature. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin, Heidelberg, New York, pp 271–290

    Chapter  Google Scholar 

  • Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oilcontaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schumann P, Spröer C, Gounot AM (2004) Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol 57:2179–2184

    Article  PubMed  CAS  Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T, Yumoto I (2006) Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 56:2883–2886

    Article  PubMed  CAS  Google Scholar 

  • Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The Genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon-and xenobiotic-degrading bacterium, and feature of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416

    Article  PubMed  CAS  Google Scholar 

  • McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ, Holloway PE, Skerratt JH, Nichols PD, Rankin LM (1998) Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 4:1405–1412

    Article  Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  PubMed  CAS  Google Scholar 

  • Michaux C, Massant J, Kerff F, Frere J-M, Docquier J-D, Vandenberghe I, Samyn B, Pierrard A, Feller G, Charlier P, Van Beeumen J, Wouters J (2008) Crystal structure of a cold-adapted class C β-lactamase. FEBS J 275:1687–1697

    Article  PubMed  CAS  Google Scholar 

  • Mikhailova G, Likhareva V, Khairullin RF, Lubenets NL, Rumsh LD, Demidyuk IV, Kostrov SV (2006) Psychrophilic trypsin-type protease from Serratia proteamaculans. Biochem Sci 71:563–570

    CAS  Google Scholar 

  • Milne PJ, Hunt AL, Rostoll K, Van Der Walt JJ, Graz CJM (1998) The biological activity of selected cyclic dipeptides. J Pharm Pharmacol 50:1331–1337

    Article  PubMed  CAS  Google Scholar 

  • Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 31–50

    Chapter  Google Scholar 

  • Mock T, Thomas DN (2008) Microalgae from Polar Regions: functional genomics and physiology. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 347–368

    Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Molec Biol Rev 70:222–252

    Article  CAS  Google Scholar 

  • Morita Y, Nakamura T, Hasan Q, Murakami Y, Yokoyama K, Tamiya E (1997) Cold-active enzymes from cold-adapted bacteria. J Am Oil Chem Soc 74:441–444

    Article  CAS  Google Scholar 

  • Moyer CL, Morita RY (2007) Psychrophiles and psychrotrophs. In: Encyclopedia of life sciences. John Wiley & Sons, Ltd. www.els.net

    Google Scholar 

  • Murray E, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, Delong EF (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    PubMed  CAS  Google Scholar 

  • Murygina V, Arinbasarov M, Kalyuzhnyi S (2000) Bioremediation of oil polluted aquatories and soils with novel preparation “Rhoder”. Biodegradation 11:385–389

    Article  PubMed  CAS  Google Scholar 

  • Naganuma T, Hua PN, Okamoto T, Ban S, Imura S, Kanda H (2005) Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biol 28:964–970

    Article  Google Scholar 

  • Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizuka N (2004) Isolation and characterization of psychrophilic yeasts producing cold-adaptedpectinolytic enzymes. Lett Appl Microbiol 38:383–387

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Ikehata R, Myoda T, Miyaji T, Tomizuka N (2007) Overexpression and functional analysis of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Protein Expr Purif 54:295–299

    Article  PubMed  CAS  Google Scholar 

  • Napolitano MJ, Shain DH (2004) Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall. Proc R Soc Lond B 271:S273–S276

    Article  Google Scholar 

  • Negoiţă TG, Ştefanic G, Irimescu Orzan ME, Palanciuc V, Oprea G (2001a) Chemical and biological characterization of soils from the Antarctic East Coast. Polar Biol 24:565–571

    Article  Google Scholar 

  • Negoiţă TG, Ştefanic G, Irimescu Orzan ME, Palanciuc V, Oprea G (2001b) Microbial chemical and enzymatic properties in Spitsbergen soils. Polar Forschung 71:41–46

    Google Scholar 

  • Nguyen KT, Xiaowei H, Alexander DC, Li C, Gu J-Q, Mascio C, Van Praagh A, Mortin L, Chu M, Silverman JA, Brian P, Baltz RH (2010) Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. Antimicrob Agents Chemother 54:1404–1413

    Article  PubMed  CAS  Google Scholar 

  • Nichols DS, Bowman J, Sanderson C, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  PubMed  CAS  Google Scholar 

  • Nichols DS, Sanderson K, Buia A, van de Kamp J, Holloway P, Bowman JP, Smith M, Mancuso C, Nichols PD, McMeekin T (2002) Bioprospecting and biotechnology in Antarctica. In: Jabour-Green J, Haward M (eds) The Antarctic: past, present and future. Antarctic CRC Research Report #28. Hobart, pp 85–103

    Google Scholar 

  • Nielsen TB, Ishii M, Kirk O (1999) Lipases A and B from the yeast Candida antarctica. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin, Heidelberg, New York, pp 48–61

    Google Scholar 

  • Niemann H, Elvert M, Wand U, Samarkin VA, Lehmann MF (2010) First Lipid Biomarker evidence for aerobic methane oxidation in the water column of Lake Untersee (East Antarctica). Geophysical Research Abstracts Vol. 12, EGU2010-5921

    Google Scholar 

  • Nogi Y (2008) Bacteria in deep sea: psychropiezophiles. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 73–82

    Chapter  Google Scholar 

  • Ohgiya S, Hoshino T, Okuyama H, Tanaka S, Ishizaki K (1999) Biotechnology of enzymes from cold adapted microorganisms, In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin, Heidelberg, New York, pp 17–35

    Chapter  Google Scholar 

  • Oikawa T, Yamamoto N, Shimoke K, Uesato S, Ikeuki T, Fujioka T (2005) Purification, characterization and overexpression of psychrophilic and thermolabile malate dehydrogenase from a novel Antarctic psychrotolerant Flavobacterium frigidimaris KUC 1. Biosci Biotechnol Biochem 59:2146–2154

    Article  Google Scholar 

  • Olivera NL, Sequeiros C, Nievas ML (2007) Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 11:517–526

    Article  PubMed  CAS  Google Scholar 

  • Onofri S, Zucconi L, Selbmann L., de Hoog S, de los Ríos A, Ruisi S, Grube M (2007) Fungal associations at the cold edge of life in algae and cyanobacteria in extreme environments. In: Seckbach J (ed) Cellular origins, life in extreme habitats and astrobiology, vol 11. Springer, Netherlands, pp 735–757

    Google Scholar 

  • Ovalle AW (1987) In-place leaching of a block carving mine. In: Cooper WC, Lagos GE, Ugarte G (eds) Copper 87, vol 3: Hydrometallurgy and electrometallurgy of copper. Universidad de Chile, Santiago, Chile, pp 17–37

    Google Scholar 

  • Papaleo E, Pasi M, Riccardi L, Sambi I, Fantucci P, De Gioia L (2008) Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Lett 582:1008–1018

    Article  PubMed  CAS  Google Scholar 

  • Park SC, Kim MS, Baik KS, Kim EM, Rhee MS, Seong CN (2008) Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 58:607–611

    Article  PubMed  CAS  Google Scholar 

  • Parrilli E, Duillio A, Tutino ML (2008) Heterologous protein expression on psychrophilic hosts. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 365–380

    Chapter  Google Scholar 

  • Pavlova K, Gargova S. Hristozova T, Tankova Z (2008) Phytase from Antarctic yeast strain Cryptococcus laurentiis AL 27. Folia Microbiol 23:29–34

    Article  Google Scholar 

  • Pernthaler J, Glöckner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306

    PubMed  CAS  Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic sea-ice. J Geophys Res 107(C10):8044. DOI: 10.1029/2000JC000438

    Article  Google Scholar 

  • Phadtare S, Inouye M (2008) Cold shock proteins. In: Margesin R, Schinner F, Marx JC, Gerday G (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 191–210

    Chapter  Google Scholar 

  • Prabagaran SR, Manorama R, Delile D, Shivaji S (2007) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected from Ushuaia, Argentina, sub Antarctica. FEMS Microbiol Ecol 59:342–355

    Article  PubMed  CAS  Google Scholar 

  • Price BP (2006) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Article  CAS  Google Scholar 

  • Prince RC (2005) The microbiology of marine oil spills bioremediation. In: Olivier B, Margot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 317–335

    Google Scholar 

  • Priscu JC, Christner BC (2004) Earths icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 130–145

    Google Scholar 

  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner F-O, Lupas AN, Amann R, Klenk H-P (2004) The genome of Desulfotea psychrophila a sulphate reducing bacterium from permanently cold Arctic sediment. Environ Microbiol 6:887–902

    Article  PubMed  CAS  Google Scholar 

  • Raja A, Prabakaran P, Gjalakshmi P (2010) Isolation and screening of antibiotic producing actinomycetes and its nature from Rothang Hill soil against Viridans Streptococcus sp. Res J Microbiol 5:44–49

    Article  Google Scholar 

  • Ramaiah N (1994) Production of certain hydrolytic enzymes by psychrophilic bacteria from the Antarctic krill, zooplankton and seawater. In: Ninth Indian Expedition to Antarctica, Scientific Report, National Institute of Ocenography, Department of Ocean Development, Goa, India, Technical Publication 6:107–114

    Google Scholar 

  • Ramteke PW, Joseph B, Kuddus M (2005) Extracellular lipases from anaerobic microorganism of Antarctic. Ind J Biotechnol 4:293–294

    Google Scholar 

  • Rashidah A, Sabrina S, Ainihayati A, Shanmugapriya P, Nazalan N, Razip S (2007) Psychrophilic enzymes from the Antarctic isolates. In: Proceeedings of the international symposium Asian collaboration in IPY 2007–2008, Science Council of Japan, Tokyo 1st March 2007, National Institute of Polar Research, Tokio, Japan, pp 116–119

    Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    Article  PubMed  CAS  Google Scholar 

  • Rendleman JA Jr (1996) Enzymatic conversion of malto-oligosaccharides and maltodextrin into cyclodextrin at low temperature. Biotechnol Appl Biochem 24:129–137

    CAS  Google Scholar 

  • Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land M, Thompson LS (2008) Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9:210

    Article  PubMed  CAS  Google Scholar 

  • Rivkina E, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193

    Article  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues-Diaz F, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547

    Article  CAS  Google Scholar 

  • Rossi G (1999) Biohydrometallurgical processes and temperature. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin, Heidelberg, New York, pp 291–308

    Chapter  Google Scholar 

  • Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 177–190

    Chapter  Google Scholar 

  • Russell NJ, Cowan DA (2005) Handling of psychrophilic microorganisms. In: Rainey FA, Oren A (eds) Extremophiles. Methods in Microbiology, vol 35. Elsevier, pp 371–393

    Google Scholar 

  • Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria — a dogma rewritten. Microbiology 145:767–779

    Article  PubMed  CAS  Google Scholar 

  • Rybalka N, Andersen RA, Kostikov I, Mohr KI, Massalski A, Olech M, Friedl T (2008) Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae). Environ Microbiol Rep 11:554–565

    Google Scholar 

  • Rysgaard S, Glud RN, Sejr MK, Blicher ME, Stahl HJ (2008) Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol 31:527–537

    Article  Google Scholar 

  • Sanchez LA, Gomez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120

    Article  PubMed  CAS  Google Scholar 

  • Sattley WM, Madigan MT (2006) Isolation, characterization and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72:5562–5568

    Article  PubMed  CAS  Google Scholar 

  • Sattley WM, Madigan MT (2007) Cold-active acetogenic bacteria from surcial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiol Lett 272:48–54

    Article  PubMed  CAS  Google Scholar 

  • Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588

    Article  PubMed  CAS  Google Scholar 

  • Sælensminde G, Halskau Ø Jr, Jonassen I (2009) Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role. Extremophiles 13:11–20

    Article  PubMed  CAS  Google Scholar 

  • Säawström C, Laybourn-Parry J, Granéli W, Anesio AM (2007) Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient — temperature manipulation experiments. Polar Biol 30:1407–1415

    Article  Google Scholar 

  • Seo HJ, Bae SS, Lee J-H, Kim S-J (2005) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666

    Article  PubMed  CAS  Google Scholar 

  • Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42 beta-galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66: 2438–2444

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui KS, Poljak A, Guilhaus M, De Francisci D, Curmi PM, Feller G, D’Amico S, Gerday C, Uversky VN, Cavicchioli R (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis. Proteins 1:486–501

    Article  CAS  Google Scholar 

  • Singh L, Ramana Venkata K (1998) Introduction. Isolation and characterization of psychrotrophic Antarctic bacteria from blue-green algal mats and their hydrolytic enzymes. In: Fourteenth Indian Expedition to Antarctica, Scientific Report, Depart Ocean Develop, Techn Public No 12, pp 199–206

    Google Scholar 

  • Singh SM, Puja G, Bhat DJ (2006) Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr Sci 90:1388–1392

    Google Scholar 

  • Sizova M, Panikov N (2007) Polaromonas hydrogenivorans sp. nov., a psychrotolerant hydrogenoxidizing bacterium from Alaskan soil. Int J Syst Evol Microbiol 57:616–619

    Article  PubMed  CAS  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Smith DW, Emde KME (1999) Effectiveness of wastewater lagoons in cold regions. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin, Heidelberg, New York, pp 235–256

    Chapter  Google Scholar 

  • Somkutl GA, Holsinger VH (1997) Microbial technologies in the production of low-lactose dairy foods. Food Sci Technol Int J 3:163–169

    Article  Google Scholar 

  • Sonan GK, Receveur-Brechot V, Duez C, Aghari N, Czjzek M, Haser R, Gerday C (2007) The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem J 407:293–302

    Article  PubMed  CAS  Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol 53: 1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Ştefanic G (1994) Biological definition, quantifying method and agricultural interpretation of soil fertility. Rom Agric Res 2:107–116

    Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N (2001) Cold active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J Biosci Bioeng 92:144–148

    PubMed  CAS  Google Scholar 

  • Takeuchi N, Kohshima S (2004) A snow algal community on Tyndall glacier in the Southern Patagonia Icefield, Chile. Arct Antarct Alp Res 36:92–99

    Article  Google Scholar 

  • Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N, Nakano K, Matsumura M (2003) Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53:519–526

    Article  PubMed  CAS  Google Scholar 

  • Tashyrev OB (2009) The complex researches of structure and function of Antarctic terrestrial microbial communities. Ukr Antarctic J 8:343–357

    Google Scholar 

  • Thomas-Hall S, Watson K (2002) Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Hall S, Hall R, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps — description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Yu Y, Chen B, Li H, Yao YF, Gua XK (2009) Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biol 32:93–103

    Article  Google Scholar 

  • Tkaczuk KL, Buinicki JM, Bialkowska A, Bielecki S, Turkievicz M, Cieslinski H, Kur J (2005) Molecular modelling of a psychrophilic beta-galactosidase. Biocat Biotransf 23:201–209

    Article  CAS  Google Scholar 

  • Tomoyuki N, Ikehata R, Myoda T, Miyaji T, Tomizuka N (2007) Overexpression and functional analysis of cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2. Prot Expr Purif 54:295–299

    Article  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res 26:125–136

    Google Scholar 

  • Tutino ML, Duilio A, Parrilli R, Remaut E, Sannia G, Marino G (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264

    Article  PubMed  CAS  Google Scholar 

  • Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov., and Cryptococcus albidosimilis sp. nov., basidioblastomycetes from Antarctic soils. Int J Syst Bact 42:547–553

    Article  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya M, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Voytek MA, Priscu JC, Ward BB (1999) The dicversity and abundance of ammonia oxidizing bacteria in lake of the McMurdo Dry Valley, Antarctica. Hydrobiologia 401:113–130

    Article  CAS  Google Scholar 

  • Wagner-Döbler I, Rheims H, Felske A, El-Ghezal A, Flade-Schröder D, Laatsch H, Lang S, Pukall R Tindall BJ (2004) Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Wartiainen I, Hestnes AG, McDonald IR, Svenning Mette M (2006) Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (786°N). Int J Syst Microbiol 56:541–547

    Article  CAS  Google Scholar 

  • Wells LE (2008) Cold active viruses. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 157–176

    Chapter  Google Scholar 

  • Wharton RA Jr, McKay CP, Simmons GM Jr, Parker CB (1985) Cryoconite holes on glaciers. Bioscience 35:499–503

    Article  PubMed  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonnere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus. Appl Environ Microbiol 64:2578–2584

    PubMed  CAS  Google Scholar 

  • Wierzchos J, de los Ríos A, Sancho LG, Ascaso C (2004) Viability of endolithic microorganisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. J Microsc Oxford 216:57–61

    Article  CAS  Google Scholar 

  • Woo JH, Hwang YO, Kang SG, Lee HS, Cho JC, Kim SJ (2007) Cloning and characterization of three epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594. Appl Microbiol Biotechnol 76:365–375

    Article  PubMed  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham W-R, Lünsdorf H, Timmis K.N, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    Article  PubMed  CAS  Google Scholar 

  • Yan BQ, Chen XL, Hou XY, He H, Zhou BC, Zhang YZ (2009) Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913: cloning, expression, characterization and function analysis of the Cterminal PPC domains. Extremophiles 13:725–733

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Lee JH, Ryu JS, Kato C, Kim SJ (2007) Shewanella donghaensis sp. nov., a psychrotrophic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deepsea sediments. Int J Syst Evol Microbiol 57:208–212

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Li H, Zeng Y, Chen B (2009) Extracellular enzymes of cold-adapted bacteria from Arctic sea ice, Canada Basin. Polar Biol 32:1539–1547

    Article  Google Scholar 

  • Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralkaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90

    PubMed  CAS  Google Scholar 

  • Yumoto I, Hirota K, Sogabe Y, Nodasaka Y, Yokota Y, Hoshino T (2003) Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 53:1985–1989

    Article  PubMed  CAS  Google Scholar 

  • Zachariassen KE, Lundheim R (1999) Application of antifreeze proteins. In: Margesin R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin, Heidelberg, pp 319–332

    Chapter  Google Scholar 

  • Zakaria MM, Ashiuchi M, Yamamoto S, Yagi T (1998) Optimization for beta-mannanase production of a psychrophilic bacterium, Flavobacterium sp. Biosci Biotechnol Biochem 62:655–660

    Article  PubMed  CAS  Google Scholar 

  • Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 121–135

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Fendrihan, S., Negoiţă, T.G. (2012). Psychrophilic microorganisms as important source for biotechnological processes. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Vienna. https://doi.org/10.1007/978-3-211-99691-1_7

Download citation

Publish with us

Policies and ethics