Skip to main content

Abstract

Iron is of great importance for many metabolic processes since the redox potential between its two valence states Fe2+ and Fe3+ lies within the range of physiological processes. Actually, iron is not a rare element, it is fourth in abundance in the earth crust, but it is not readily available for microorganisms. In the soil ferric oxide hydrates are formed at pH values around seven and the concentration of free Fe3+ is at best 10−17 mol/dm3 while about 10−6 mol/dm3 would be needed. In living organisms iron is usually strongly bound to peptidic substances such as transferrins. To increase the supply of soluble iron microorganisms other than those living in an acidic habitat may circumvent the problem by reduction of Fe3+ to Fe2+ (182), which seems to be of major importance for marine phytoplankton (151); see also amphiphilic marine bacteria (Sect.2.8) and Fe2+ binding ligands (Sect. 7) below. An important alternative is the production of Fe3+ chelating compounds, so-called siderophores. Siderophores are secondary metabolites with masses below 2,000 Da and a high affinity to Fe3+. Small iron-siderophore complexes can enter the cell via unspecific porins, larger ones need a transport system that recognizes the ferri-siderophore at the cell surface. In the cell, iron is released mostly by reduction to the less strongly bound Fe2+ state (137), and the free siderophore is re-exported (“shuttle mechanism”); for a modified shuttle system see pyoverdins (Sect. 2.1) and amonabactins (Sect. 2.7). Rarely the siderophore is degraded in the periplasmatic space as, e.g. enterobactin (Sect. 2.7). Alternatively Fe3+ is transferred at the cell surface from the ferri-siderophore to a trans-membrane transport system (“taxi mechanism”). A probably archaic and unspecific variety of the taxi mechanism comprises the reduction of Fe3+ at the cell surface (see ferrichrome A, Sect. 2.6 (99, 105)). The terms “shuttle” and “taxi mechanism” were coined by Raymond and Carrano (296).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adapa S, Huber P, Keller-Schierlein W (1982) Stoffwechselprodukte von Mikroorganismen. 216. Mitteilung. Isolierung, Strukturaufklärung und Synthese von Ferrioxamin H. Helv Chim Acta 65: 1818

    CAS  Google Scholar 

  2. Adolphs M, Taraz K, Budzikiewicz H (1996) Catecholate Siderophores from Chryseomonas luteola. Z Naturforsch 51c: 281

    Google Scholar 

  3. Allard KA, Dao J, Sanjeevaiah P, McCoy-Simandle K, Chatfield CH, Crumrine DS, Castignetti D, Cianciotto NP (2009) Purification of Legiobactin and the Importance of this Siderophore in Lung Infection by Legionella pneumophila. Infect Immun 77: 2887

    CAS  Google Scholar 

  4. Amann C, Taraz K, Budzikiewicz H, Meyer JM (2000) The Siderophores of Pseudomonas fluorescens 18.1 and the Importance of Cyclopeptidic Substructures for the Recognition at the Cell Surface. Z Naturforsch 55c: 671

    CAS  Google Scholar 

  5. Ams DA, Maurice PA, Hersman LE, Forsythe JH (2002) Siderophore Production by an Aerobic Pseudomonas mendocina Bacterium in the Presence of Kaolinite. Chem Geol 188: 161

    CAS  Google Scholar 

  6. 4. Anderegg G, Räber M (1990) Metal Complex Formation of a New Siderophore Desferrithiocin and of Three Related Ligands. J Chem Soc Chem Commun 1194

    Google Scholar 

  7. Anke H, Kinn J, Bergquist KE, Sterner O (1991) Production of Siderophores by Strains of the Genus Trichoderma. Isolation and Characterization of the New Lipophilic Coprogen Derivative, Palmitoylcoprogen. Biol Metals 4: 176

    CAS  Google Scholar 

  8. Ankenbauer RG, Toyokuni T, Staley A, Rinehard KL Jr, Cox CD (1988) Synthesis and Biological Activity of Pyochelin, a Siderophore of Pseudomonas aeruginosa. J Bacteriol 170: 5344

    CAS  Google Scholar 

  9. Anthoni U, Christophersen C, Nielsen PH, Gram L, Petersen BO (1995) Pseudomonine, an Isoxazolidone with Siderophoric Activity from Pseudomonas fluorescens AH2 Isolated from a Lake Victorian Nile Perch. J Nat Prod 58: 1786

    CAS  Google Scholar 

  10. Arceneau JEL, Davis WB, Downer DN, Haydon AH, Byers BR (1973) Fate of Labeled Hydroxamates during Iron Transport from Hydroxamate-Iron Chelates. J Bacteriol 115: 919

    Google Scholar 

  11. Arnow LE (1937) Colorimetric Determination of the Components of 3,4-Dihydroxyphenylalanine-Tyrosine Mixtures. J Biol Chem 118: 531

    CAS  Google Scholar 

  12. Atkin CL, Neilands JB (1968) Rhodotorulic Acid, a Diketopiperazine Dihydroxamic Acid with Growth-Factor Activity. I. Isolation and Characterization. Biochemistry 7: 3734

    CAS  Google Scholar 

  13. Atkin CL, Neilands JB, Phaff HJ (1970) Rhodotorulic Acid from Species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a New Alanine-containing Ferrichrome from Cryptococcus melibiosum. J Bacteriol 103: 722

    CAS  Google Scholar 

  14. Awaya JD, DuBois JL (2008) Identification, Isolation, and Analysis of a Gene Cluster Involved in the Iron Acquisition by Pseudomonas mendocina ymp. Biometals 21: 353

    CAS  Google Scholar 

  15. Bachhawat AK, Ghosh S (1987) Iron Transport in Azospirillum brasiliense: Role of the Siderophore Spirilobactin. J Gen Microbiol 133: 1759

    CAS  Google Scholar 

  16. Ballio A, Bertholdt H, Carilli A, Chain EB FRS, Di Vittorio V, Tonolo A, Vero-Barcellona L (1963) Studies on Ferroverdin, a Green Iron-containing Pigment Produced by a Streptomyces Wak. Species. Proc Royal Soc London; Ser B; Biol Sci 158: 43

    CAS  Google Scholar 

  17. Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical Cycling of Iron in the Surface Ocean Mediated by Microbial Iron(III)-Binding Ligands. Nature 413: 409

    CAS  Google Scholar 

  18. Barbeau K, Rue EL, Trick CG, Bruland KW, Butler A (2003) Photochemical Reactivity of Siderophores Produced by Marine Heterotrophic Bacteria and Cyanobacteria Based on Characteristic Fe(III) Binding Groups. Limnol Oceanogr 48: 1069

    CAS  Google Scholar 

  19. Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a Photoreactive Siderophore Produced by the Oil-Degrading Marine Bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124: 378

    CAS  Google Scholar 

  20. Barelmann I, Meyer JM, Taraz K, Budzikiewicz H (1996) Cepaciachelin, a New Catecholate Siderophore from Burkholderia (Pseudomonas) cepacia. Z Naturforsch 51c: 627

    Google Scholar 

  21. Barelmann I, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2002) The Structures of the Pyoverdins from Two Pseudomonas fluorescens Strains Accepted Mutually by their Respective Producers. Z Naturforsch 57c: 9

    CAS  Google Scholar 

  22. Barelmann I, Uría Fernández D, Budzikiewicz H, Meyer JM (2003) The Pyoverdine from Pseudomonas chlororaphis D-TR133 Showing Mutual Acceptance with the Pyoverdine from Pseudomonas fluorescens CHA0. BioMetals 16: 263

    CAS  Google Scholar 

  23. Barklay R, Ewing DF, Ratledge C (1985) Isolation, Identification, and Structural Analysis of the Mycobactins of Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, and Mycobacterium paratuberculosis. J Bacteriol 164: 896

    Google Scholar 

  24. Barry SM, Challis GL (2009) Recent Advances in Siderophore Biosynthesis. Curr Opin Chem Biol 13: 205

    CAS  Google Scholar 

  25. Beiderbeck H (1997) Untersuchung der Pyoverdine aus Pseudomonas aeruginosa ATCC 15152, Pseudomonas fluorescens CFBP 2392 und Pseudomonas putida 2461. Diplomarbeit, Universität zu Köln, and unpublished results

    Google Scholar 

  26. Beiderbeck H, Risse D, Budzikiewicz H, Taraz K (1999) A New Pyoverdin from Pseudomonas aureofaciens. Z Naturforsch 54c: 1

    CAS  Google Scholar 

  27. Beiderbeck H, Taraz K, Budzikiewicz H, Walsby AE (2000) Anachelin, the Siderophore of the Cyanobacterium Anabena cylindrica CCAP 1403/2A. Z Naturforsch 55c: 681

    CAS  Google Scholar 

  28. Beiderbeck H, Taraz K, Meyer JM (1999) Revised Structures of the Pyoverdins from Pseudomonas putida CFBP 2461 and from Pseudomonas fluorescens CFBP 2392. BioMetals 12: 331-338

    CAS  Google Scholar 

  29. Bergeron RJ (1987) Synthesis and Properties of Polyamine Catecholamide Chelators. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron Transport in Microbes, Plants and Animals. VCH: Weinheim, p 285

    Google Scholar 

  30. Bergeron RJ, Dionis JB, Elliot GT, Kline SJ (1985) Mechanism and Stereospecificity of the Parabactin-mediated Iron-Transport System in Paracoccus denitrificans. J Biol Chem 260: 7936

    CAS  Google Scholar 

  31. Bergeron RJ, Garlich JR, McManis JS (1985) Total Synthesis of Vibriobactin. Tetrahedron 41: 507

    CAS  Google Scholar 

  32. Bergeron RJ, Huang G, Smith RE, Bharti N, McManis JS, Butler A (2003) Total Synthesis and Structure Revision of Petrobactin. Tetrahedron 59: 2007

    CAS  Google Scholar 

  33. Bergeron RJ, Kline SJ (1982) Short Synthesis of Parabactin. J Am Chem Soc 104: 4489

    CAS  Google Scholar 

  34. Bergeron RJ, Kline SJ (1984) 300-MHz 1H NMR Study of Parabactin and its Ga(III) Chelate. J Am Chem Soc 106: 3089

    CAS  Google Scholar 

  35. Bergeron RJ, Kline SJ, Stolowich NJ, McGovern KA, Burton PS (1981) Flexible Synthesis of Polyamine Catecholamides. J Org Chem 46: 4524

    CAS  Google Scholar 

  36. Bergeron RJ, McManis JS, Dionis JB, Garlich JR (1985) An Efficient Total Synthesis of Agrobactin and its Ga(III) Chelate. J Org Chem 50: 2780

    CAS  Google Scholar 

  37. Bergeron RJ, Phanstiel O iv (1992) The Total Synthesis of Nannochelin, a Novel Cinnamoyl Hydroxamate-containing Siderophore. J Org Chem 57: 7140

    CAS  Google Scholar 

  38. Bergeron RJ, Xin MG, Weimar WR, Smith RE, Wiegand J (2001) Significance of Asymmetric Sites in Choosing Siderophores as Deferration Agents. J Med Chem 44: 2469

    CAS  Google Scholar 

  39. Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of Ferrioxamine E as the Principal Siderophore of Erwinia herbicola (Enterobacter agglomerans). Biol Metals 1: 51

    CAS  Google Scholar 

  40. Berti AD, Thomas MG (2009) Analysis of Achromobactin Biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191: 4594

    Google Scholar 

  41. Bertrand S, Larcher G, Landreau A, Richomme P, Duval O, Bouchara JP (2009) Hydroxamate Siderophores of Scedosporium apiospermum. Biometals 22: 1019

    CAS  Google Scholar 

  42. Bickel H, Bosshardt R, Gäumann E, Reusser P, Vischer E, Voser W, Wettstein A, Zähner H (1960) Stoffwechselprodukte von Actinomyceten. 26. Mitteilung. Über die Isolierung und Charakterisierung der Ferrioxamine A–F, neuer Wuchsstoffe der Sideramingruppe. Helv Chim Acta 43: 2118

    CAS  Google Scholar 

  43. Bickel H, Hall GE, Keller-Schierlein W, Prelog V, Vischer E, Wettstein A (1960) Stoffwechselprodukte von Actinomyceten. 27. Mitteilung. Über die Konstitution von Ferrioxamin B. Helv Chim Acta 43: 2129

    CAS  Google Scholar 

  44. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD (2004) The Structure of Salmochelins: C-Glucosylated Enterobactins of Salmonella enterica. BioMetals 17: 471

    CAS  Google Scholar 

  45. Boopathi E, Rao KS (1999) A Siderophore from Pseudomonas putida Type A1: Structural and Biological Characterization. Biochim Biophys Acta 1435: 30

    CAS  Google Scholar 

  46. Boukhalfa H, Reilly SD, Michalczyk R, Iyer S, Neu P (2006) Iron (III) Coordination Properties of a Pyoverdin Siderophore Produced by Pseudomonas putida ATCC 33015. Inorg Chem 45: 5607

    CAS  Google Scholar 

  47. Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E (2009) Sideromycins: Tools and Antibiotics. Biometals 22: 3

    CAS  Google Scholar 

  48. 35. Briskot G, Taraz K, Budzikiewicz H (1989) Pyoverdin-Type Siderophores from Pseudomonas aeruginosa. Liebigs Ann Chem 375

    Google Scholar 

  49. Budzikiewicz H (2001) Siderophore-Antibiotic Conjugates used as Trojan Horses against Pseudomonas aeruginosa. Curr Top Med Chem 1: 73

    CAS  Google Scholar 

  50. Budzikiewicz H (2003) Heteroaromatic Monothiocarboxylic Acids from Pseudomonas spp. Biodegradation 14: 65

    CAS  Google Scholar 

  51. Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (Fluorescent and Non-fluorescent Pseudomonas spp.). Progr Chem Org Nat Prod 87: 81

    CAS  Google Scholar 

  52. Budzikiewicz H (2004) Bacterial Catecholate Siderophores. Mini-Rev Org Chem 1: 163

    Google Scholar 

  53. Budzikiewicz H (2005) Bacterial Citrate Siderophores. Mini-Rev Org Chem 3: 119

    Google Scholar 

  54. Budzikiewicz H (2006) Bacterial Aromatic Sulfonates – a Bucherer Reaction in Nature? Mini-Rev Org Chem 3: 93

    CAS  Google Scholar 

  55. Budzikiewicz H, Bössenkamp A, Taraz K, Pandey A, Meyer JM (1997) Corynebactin, a Cyclic Catecholate Siderophore from Corynebacterium glutamicum ATCC 14067 (Brevibacterium sp. DSM 20411). Z Naturforsch 52c: 551

    CAS  Google Scholar 

  56. Budzikiewicz H, Kilz S, Taraz K, Meyer JM (1997) Identical Pyoverdines from Pseudomonas fluorescens 9AW and from Pseudomonas putida 9BW. Z Naturforsch 52c: 721

    CAS  Google Scholar 

  57. Budzikiewicz H, Münzinger M, Taraz K, Meyer JM (1997) Schizokinen, the Siderophore of the Plant Deleterious Bacterium Ralstonia (Pseudomonas) solanacearum ATCC 11969. Z Naturforsch 52c: 496

    CAS  Google Scholar 

  58. Budzikiewicz H, Schäfer M, Meyer JM (2007) Siderotyping of Fluorescent Pseudomonads – Problems in the Determination of Molecular Masses by Mass Spectrometry. Mini-Rev Org Chem 4: 246

    CAS  Google Scholar 

  59. Budzikiewicz H, Schäfer M, Uría Fernández D, Matthijs S, Cornelis P. (2007) Characterization of the Chromophores of Pyoverdins and Related Siderophores by Electrospray Tandem Mass Spectrometry. BioMetals 20: 135

    CAS  Google Scholar 

  60. Budzikiewicz H, Schäfer M, Uría Fernández D, Meyer JM (2006) Structure Proposal for a New Pyoverdin from Pseudomonas sp. PS 6.10. Z Naturforsch C 61c: 815

    CAS  Google Scholar 

  61. Budzikiewicz H, Schröder H, Taraz K (1992) Zur Biogenese der Pseudomonas-Siderophore: Der Nachweis analoger Strukturen eines Pyoverdin-Desferriferribactin-Paares. Z Naturforsch 47c: 26

    CAS  Google Scholar 

  62. Budzikiewicz H, Uría Fernández D, Fuchs R, Michalke R, Taraz K, Ruangviriyachai C (1999) Pyoverdins with a Lys ε-Amino Link in the Peptide Chain? Z Naturforsch 54c: 1021

    CAS  Google Scholar 

  63. Bultreys A, Gheysen I, de Hoffmann E (2006) Yersiniabactin Production by Pseudomonas syringae and Escherichia coli, and Description of a Second Yersiniabactin Locus Evolutionary Group. Appl Environ Microbiol 72: 3814

    CAS  Google Scholar 

  64. Bultreys A, Gheysen I, Wathelet B, Maraite H, de Hoffman E (2003) High-Performance Liquid Chromatography Analyses of Pyoverdin Siderophores Differentiate among Phytopathogenic Fluorescent Pseudomonas Species. Appl Environ Microbiol 69: 1143 and unpublished material

    CAS  Google Scholar 

  65. Bultreys A, Gheysen I, Wathelet B, Schäfer M, Budzikiewicz H (2004) The Pyoverdins of Pseudomonas syringae and Pseudomonas cichorii. Z Naturforsch 59c: 613

    CAS  Google Scholar 

  66. Burton MO, Sowden FJ, Lochhead AG (1954) The Isolation and Nature of the “Terregens Factor”. Can J Biochem Physiol 32: 400 (Chem Abstr 48, 10839d, 1954).

    CAS  Google Scholar 

  67. Buyer JS, de Lorenzo V, Neilands JB (1991) Production of the Siderophore Aerobactin by a Halophilic Pseudomonad. Appl Environ Microbiology 57: 2246

    CAS  Google Scholar 

  68. Byers BR, Powell MV, Lankford CE (1967) Iron-Chelating Hydroxamic Acid (Schizokinen) Active in Initiation of Cell Division in Bacillus megaterium. J Bacteriol 93: 286

    CAS  Google Scholar 

  69. Calugay RJ, Takeyama H, Mukoyama D, Fukuda Y, Suzuki T, Kanoh K, Matsunaga T (2006) Catechol Siderophore Excretion by Magnetotactic Bacterium Magnetospirillum magneticum AMB-1. J Biosci Bioeng 101: 445

    CAS  Google Scholar 

  70. Candeloro S, Gardenić D, Taylor N, Thompson B, Viswamitra M, Hodgkin DC (1969) Structure of Ferroverdin. Nature 224: 589

    CAS  Google Scholar 

  71. Capon RJ, Steward M, Ratnayake R, Lacey E, Gill JH (2007) Citromycetins and Bilains A-C: new Aromatic Polyketides and Diketopiperazines from Australian Marine-derived and Terrestrial Penicillium spp. J Nat Prod 70: 1746

    CAS  Google Scholar 

  72. Carmi R, Carmeli S, Levy E, Gough FJ (1994) (+)-(S)-Dihydroaeruginoic Acid, an Inhibitor of Septoria tritici and other Phytopathogenic Fungi and Bacteria, Produced by Pseudomonas fluorescens. J Nat Prod 57: 1200

    CAS  Google Scholar 

  73. Carrano CJ, Drechsel H, Kaiser D, Jung G, Matzanke B, Winkelmann G, Rochel N, Albrecht-Gary AM (1996) Coordination Chemistry of the Carboxylate Type Siderophore Rhizoferrin: the Iron(III) Complex and its Metal Analogs. Inorg Chem 35: 6429

    CAS  Google Scholar 

  74. Carrano CJ, Jordan M, Drechsl H, Schmid DG, Winkelmann G (2001) Heterobactins: a New Class of Siderophores from Rhodococcus erythropolis IGTS8 Containing both Hydroxamate and Catecholate Donor Groups. BioMetals 14: 119

    CAS  Google Scholar 

  75. Carrano CJ, Raymond KN (1978) Coordination Chemistry of Microbial Iron Transport Compounds. 10. Characterization of the Complexes of Rhodotorulic Acid, a Dihydroxamate Siderophore. J Am Chem Soc 100: 5371

    CAS  Google Scholar 

  76. Carrano CJ, Thieken A, Winkelmann G (1996) Specificity and Mechanism of Rhizoferrin-Mediated Metal Ion Uptake. BioMetals 9: 185

    CAS  Google Scholar 

  77. Carson KC, Glenn AR, Dilworth MJ (1994) Specificity of Siderophore-mediated Transport of Iron in Rhizobia. Arch Microbiol 161: 333

    CAS  Google Scholar 

  78. Chakraborty RN, Patel HN, Desai SB (1990) Isolation and Partial Characterization of Catechol-Type Siderophore from Pseudomonas stutzeri. Curr Microbiol 20: 283

    CAS  Google Scholar 

  79. Challis GL (2005) A Widely Distributed Bacterial Pathway for Siderophore Biosynthesis Independent of Nonribosomal Peptide Synthetases. ChemBioChem 6: 601

    CAS  Google Scholar 

  80. Chambers CE, McIntyre DD, Mouck M, Sokol PA (1996) Physical and Structural Characterization of Yersiniophore, a Siderophore Produced by Clinical Isolates of Yersinia enterocolitica. BioMetals 9: 157

    CAS  Google Scholar 

  81. Cianciotto NP (2007) Iron Acquisition by Legionella pneumophila. Biometals 20: 323

    CAS  Google Scholar 

  82. Ciche TA, Blackburn M, Carney JR, Ensign JB (2003) Photobactin: a Catechol Siderophore Produced by Photorhabdus luminescens, an Entomopathogen Mutually Associated with Heterorhabditis bacteriophora NC1 Nematodes. Appl Environ Microbiol 69: 4706

    CAS  Google Scholar 

  83. Cobessi D, Celia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F (2005) The Crystal Structure of the Outer Pyoverdine Membrane Receptor FpvA from Pseudomonas aeruginosa at 3.6 Å Resolution. J Mol Biol 347: 121

    CAS  Google Scholar 

  84. Cobessi D, Celia H, Pattus F (2005) Crystal Structure at High Resolution of Ferric-Pyochelin and its Membrane Receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352: 893

    CAS  Google Scholar 

  85. Cody YS, Gross DC (1987) Characterization of Pyoverdinpss, the Fluorescent Siderophore Produced by Pseudomonas syringae pv. syringae. Appl Environ Microbiol 53: 928

    CAS  Google Scholar 

  86. Cone MC, Melville CR, Carney JR, Gore MP, Gould, SJ (1995) 4-Hydroxy-3-nitrosobenzamide and its Ferrous Chelate from Streptomyces murayamaensis. Tetrahedron 51: 3095

    CAS  Google Scholar 

  87. Corbin JL, Bulen WA (1969) The Isolation and Identification of 2,3-Dihydroxybenzoic Acid and 2-N,6-N-di(2,3-dihydroxybenzoyl)-L-lysine Formed by Iron-deficient Azozobacter vinelandii. Biochemistry 8: 757

    CAS  Google Scholar 

  88. 71. Corey EJ, Bhattacharyya S (1977) Total Synthesis of Enterobactin, a Macrocyclic Iron Transporting Agent of Bacteria. Tetrahedron Lett 3919

    Google Scholar 

  89. Cornish AS, Page WJ (1995) Production of the Triacetocholate (sic!) Siderophore Protochelin by Azotobacter vinelandii. BioMetals 8: 332

    CAS  Google Scholar 

  90. Cox CD, Rinehart KL Jr, Moore ML, Cook, JC Jr (1981) Pyochelin: Novel Structure of an Iron-chelating Growth Promotor for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78: 4256

    CAS  Google Scholar 

  91. De M, Basu M, Chakrabartty PK (2003) Increased Synthesis of Dihydroxybenzoic Acid in the Presence of Aluminum by Rhizobium MO1. Acta Microbiol Polon 52: 195

    Google Scholar 

  92. De Lorenzo V, Martinez JL (1988) Aerobactin Production as a Virulence Factor: a Reevaluation. Eur J Clin Microbiol Infect Dis 7: 621

    Google Scholar 

  93. Demange P, Bateman A, Dell A, Abdallah MA (1988) Structure of Azotobactin D, a Siderophore of Azotobacter vinelandii Strain D (CCM 289). Biochemistry 27: 2745

    CAS  Google Scholar 

  94. Demange P, Bateman A, MacLeod JK, Dell A, Abdallah MA (1990) Bacterial Siderophores: Unusual 3,4,5,6-Tetrahydropyrimidine-Based Amino Acids in Pyoverdins from Pseudomonas fluorescens. Tetrahedron Lett 31: 7611

    CAS  Google Scholar 

  95. Demange P, Bateman A, Mertz C, Dell A, Piémont Y, Abdallah MA (1990) Bacterial Siderophores: Structure of Pyoverdins Pt, Siderophores of Pseudomonas tolaasii NCPPB 2192, and Pyoverdins Pf, Siderophores of Pseudomonas fluorescens CCM 2798. Identification of an Unusual Natural Amino Acid. Biochemistry 29: 11041

    CAS  Google Scholar 

  96. Demange P, Wendenbaum S, Bateman A, Dell A, Meyer JM, Abdallah MA (1986) Bacterial Siderophores: Structure of Pyoverdins and Related Compounds. In: Swinburne TR (ed) Iron, Siderophores, and Plant Diseases. Plenum, New York, p 131

    Google Scholar 

  97. Demange P, Wendenbaum S, Linget C, Bateman A, MacLeod J, Dell A, Albrecht AM, Abdallah MA (1989) Pseudomonas Siderophores: Structure and Physicochemical Properties of Pyoverdins and Related Peptides. Second Forum on Peptides 174: 95

    CAS  Google Scholar 

  98. Demange P, Wendenbaum S, Linget C, Mertz C, Cung MT, Dell A, Abdallah MA (1990) Bacterial Siderophores: Structure and NMR Assignment of Pyoverdins Pa, Siderophores of Pseudomonas aeruginosa ATCC 15692. Biol Metals 3: 155

    CAS  Google Scholar 

  99. Deml G, Voges K, Jung G, Winkelmann G (1984) Tetraglycylferrichrome – the First Heptapeptide Ferrichrome. FEBS 173: 53

    CAS  Google Scholar 

  100. Deng J, Hamada Y, Shioiri T (1995) Total Synthesis of Alterobactin A, a Super Siderophore from an Open-Ocean Bacterium. J Am Chem Soc 117: 7824

    CAS  Google Scholar 

  101. Dertz EA, Xu J, Stintzi A, Raymond KN (2006) Bacillibactin-mediated Iron Transport in Bacillus subtilis. J Am Chem Soc 128: 22

    CAS  Google Scholar 

  102. de Voss JJ, Rutter K, Schroeder BG, Barry CE iii (1999) Iron Acquisition and Metabolism by Mycobacteria. J Bacteriol 181: 4443

    Google Scholar 

  103. Dhungana S, Michalczyk R, Boukhalfa H, Lack JG, Koppisch AT, Fairlee JM, Johnson MT, Ruggiero CE, John SG, Cox MM, Browder CC, Forsythe JH, Vanderberg LA, Neu MP, Hersman LE (2007) Purification and Characterization of Rhodobactin: a Mixed Ligand Siderophore from Rhodococcus rhodochrous Strain OFS. Biometals 20: 853

    CAS  Google Scholar 

  104. Dhungana S, Miller MJ, Dong L, Ratledge C, Crumbliss AL (2003) Iron Chelation Properties of an Extracellular Siderophore Exochelin MN. J Am Chem Soc 125: 7654

    CAS  Google Scholar 

  105. Diekmann H (1967) Stoffwechselprodukte von Mikroorganismen. 56. Mitteilung. Fusigen – ein neues Sideramin aus Pilzen. Arch Mikrobiol 58: 1

    CAS  Google Scholar 

  106. Diekmann H (1970) Stoffwechselprodukte von Mikroorganismen. 81. Mitteilung. Vorkommen und Strukturen von Coprogen B und Dimerumsäure. Arch Microbiol 73: 65

    CAS  Google Scholar 

  107. Diekmann H, Krezdorn E (1975) Stoffwechselprodukte von Mikroorganismen. 150. Mitteilung. Ferricrocin, Triacetylfusigen und andere Sideramine aus Pilzen der Gattung Aspergillus, Gruppe Fumigatus. Arch Microbiol 106: 191

    CAS  Google Scholar 

  108. Diels L, Van Roy S, Taghavi S, Van Houdt R (2009) From Industrial Sites to Environmental Applications with Cupriavidus metallidurans. Antonie van Leeuwenhoek 96: 247

    Google Scholar 

  109. Dilworth MJ, Carson KC, Giles RGF, Byrne LT, Glenn AR (1998) Rhizobium leguminosarum bv. viciae Produces a Novel Cyclic Trihydroxamate Siderophore, Vicibactin. Microbiology 144: 781

    Google Scholar 

  110. Dimise EJ, Widboom PF, Bruner SD (2008) Structure Elucidation and Biosynthesis of Fuscachelins, Peptide Siderophores from the Moderate Thermophile Thermobifida fusca. Proc Natl Acad Sci USA 105: 15311

    CAS  Google Scholar 

  111. Drechsel H, Metzger J, Freund S, Jung G, Boelaert JR, Winkelmann G (1991) Rhizoferrin – a Novel Siderophore from the Fungus Rhizopus microsporus var. rhizopodiformis. Biol Metals 4: 238

    CAS  Google Scholar 

  112. Drechsel H, Freund S, Nicholson G, Haag H, Jung O, Zähner H, Jung G. (1993) Purification and Chemical Characterization of Staphyloferrin B, a Hydrophilic Siderophore from Staphylococci. BioMetals 6: 185

    CAS  Google Scholar 

  113. Drechsel H, Jung G, Winkelmann G (1992) Stereochemical Characterization of Rhizoferrin and Identification of its Dehydration Products. BioMetals 5: 141

    CAS  Google Scholar 

  114. 96. Drechsel H, Stephan H, Lotz R, Haag H, Zähner H, Hantke K, Jung G (1995) Structure Elucidation of Yersiniabactin, a Siderophore from Highly Virulent Yersinia Strains. Liebigs Ann Chem 1727

    Google Scholar 

  115. Drechsel H, Winkelmann G (1997) Iron Chelation and Siderophores. In: Winkelmann G, Carrano CJ (eds) Transition Metals in Microbial Metabolism. Harwood Academic Publishers, Amsterdam, p 1

    Google Scholar 

  116. du Moulinet d’Hardemare A, Serratrice G, Pierre JL (2004) Synthesis and Iron-binding Properties of Quinolobactin, a Siderophore from a Pyoverdine-deficient Pseudomonas fluorescens. BioMetals 17: 691

    Google Scholar 

  117. Ecker DJ, Lancaster JR Jr., Emery T (1982) Siderophore Iron Transport Followed by Electron Paramagnetic Resonance Spectroscopy. J Biol Chem 257: 8623

    CAS  Google Scholar 

  118. Egawa Y, Umino K, Ito Y, Okuda T. (1971) Antibiotic YC 73 of Pseudomonas Origin. II. Structure and Synthsis of Thioformin and its Cupric Complex (YC 73). J Antibiot 24: 124

    CAS  Google Scholar 

  119. Ehlert G, Taraz K, Budzikiewicz H (1994) Serratiochelin, a New Catecholate Siderophore from Serratia marcescens. Z Naturforsch 49c: 11

    CAS  Google Scholar 

  120. 102. El Hage Chahine JM, Bauer AM, Baraldo K, Lion C, Ramiandrasoa F, Kunesch G. (2001) Kinetics and Thermodynamics of Complex Formation between FeIII and Two Synthetic Chelators of the Dicatecholspermidine Family. Eur J Inorg Chem 2287

    Google Scholar 

  121. Emery T (1971) Role of Ferrichrome as a Ferric Ionophore in Ustilago sphaerogena. Biochemistry 10: 1483

    CAS  Google Scholar 

  122. Emery T (1976) Fungal Ornthine Esterases: Relationship to Iron Transport. Biochemistry 15: 2723

    CAS  Google Scholar 

  123. Emery T. (1980) Malonichrome, a New Iron Chelate from Fusarium roseum. Biochim Biophys Acta 629: 382

    CAS  Google Scholar 

  124. Emery T (1987) Reductive Mechanisms of Iron Assimilation. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron Transport in Microbes, Plants and Animals. VCH, Weinheim, p 235

    Google Scholar 

  125. Emery T, Neilands JB (1961) Structure of the Ferrichrome Compounds. J Am Chem Soc 83: 1626

    CAS  Google Scholar 

  126. Eng-Wilmot DL, Kerley EL, Perryman DD, Brown C, Noah WH, McDyer D, Gore M, Mergo PJ, Cockburn BA (1990) Pyoverdin Type Siderophores from Various Strains of Pseudomonas aeruginosa. Reported at the International Symposium on Iron Transport and Metabolism II, 20.–22. June 1990, Austin TX, USA

    Google Scholar 

  127. Eng-Wilmot DL, Rahman A, Mendenhall JV, Grayson SL, van der Helm D (1984) Molecular Structure of Ferric Neurosporin, a Minor Siderophore-like Compound Containing N δ-hydroxy-d-ornithine. J Am Chem Soc 106: 1285

    CAS  Google Scholar 

  128. Eng-Wilmot DL, van der Helm D (1980) Molecular and Crystal Structure of the Linear Tricatechol Siderophore, Agrobactin. J Am Chem Soc 102: 7719

    CAS  Google Scholar 

  129. Feistner GJ (1995) Suggestion for a New, Semirational Nomenclature for the Free Chelators of Ferrioxamines. BioMetals 8: 193

    CAS  Google Scholar 

  130. Feistner GJ (1995) Proferrioxamine Synthesis in Erwinia amylovora in Response to Precursor or Hydroxylysine Feeding: Metabolic Profiling with Liquid Chromatography-Electrospray Mass Spectrometry. BioMetals 8: 318

    CAS  Google Scholar 

  131. Feistner G, Beaman BL (1987) Characterization of 2,3-Dihydroxybenzoic Acid from Nocardia asteroides GUH-2. J Bacteriology 169: 3982

    CAS  Google Scholar 

  132. Feistner GJ, Hsieh LL (1995) On the Collision-activated Fragmentation of Proferrioxamines: Evidence for a Succinimide-mediated Mechanism. J Am Soc Mass Spectrom 6: 836

    CAS  Google Scholar 

  133. Feistner GJ, Korth H, Ko H, Pulverer G, Budzikiewicz H (1983) Ferrorosamine A from Erwinia rhapontici. Curr Microbiol 8: 239

    CAS  Google Scholar 

  134. Feistner GJ, Mavridis A, Rudolph K (1997) Proferrorosamines and Phytopathogenicity in Erwinia spp. BioMetals 10: 1

    CAS  Google Scholar 

  135. Feistner GJ, Stahl DC, Gabrik AH (1993) Proferrioxamine Siderophores of Erwinia amylovora. A Capillary Liquid Chromatographic/Electrospray Tandem Mass Spectrometric Study. Org Mass Spectrom 28: 163

    CAS  Google Scholar 

  136. Fekete FA, Lanzi RA, Beaulieu JB, Longcope DC, Sulya AW, Hayes RN, Mabbott GA (1989) Isolation and Preliminary Characterization of Hydroxamic Acids Formed by Nitrogen-fixing Azotobacter chroococcum B-8. Appl Envir Microbiol 55: 298

    CAS  Google Scholar 

  137. Filsak G, Taraz K, Budzikiewicz H. (1994) Untersuchungen zur Struktur und Derivatisierung von Kondensationsprodukten der 2,4-Diaminobuttersäure mit anderen Aminosäuren. Z Naturforsch 49c: 18

    CAS  Google Scholar 

  138. Frederick CB, Bentley MD, Shive W (1981) Structure of Triornicin, a New Siderophore. Biochemistry 20: 2436

    CAS  Google Scholar 

  139. Frederick CB, Bentley MD, Shive W (1982) The Structure of the Fungal Siderophore, Isotriornicin. Biochem Biophys Res Commun 105: 133

    CAS  Google Scholar 

  140. Fuchs R (2000) Massenspektrometrische Untersuchung cyclischer Pyoverdine: Strukturaufklärung und Siderotyping. Dissertation; Universität zu Köln.

    Google Scholar 

  141. Fukasawa K, Goto M, Sasaki K, Hirata Y, Sato S (1972) Structure of the Yellow-Green Fluorescent Peptide Produced by Iron-deficient Azotobacter vinelandii Strain O. Tetrahedron 28: 5359

    CAS  Google Scholar 

  142. Gademann K, Bethuel Y, Locher HH, Hubschwerlen C (2007) Biomimetic Total Synthesis and Antimicrobial Evaluation of Anachelin H. J Org Chem 72: 8361

    CAS  Google Scholar 

  143. Gademann K, Budzikiewicz H (2004) The Peptide Alkaloid Anachelin: NMR Spectroscopic Evidence for a β-Turn Formation in Aqueous Solution. Chimia 58: 212

    CAS  Google Scholar 

  144. Garner BL, Arceneaux JEL, Byers BR (2004) Temperature Control of a 3,4-dihydroxybenzoate (Protocatechuate)-based Siderophore in Bacillus anthracis. Curr Microbiol 49: 89

    CAS  Google Scholar 

  145. Geisen K, Taraz K, Budzikiewicz H (1992) Neue Siderophore des Pyoverdin-Typs aus Pseudomonas fluorescens. Monatsh Chem 123: 151

    CAS  Google Scholar 

  146. Georgias H, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (1999) The Structure of the Pyoverdin from Pseudomonas fluorescens 1.3. Structural and Biological Relationship of Pyoverdins from Different Strains. Z Naturforsch 54c: 301

    CAS  Google Scholar 

  147. Gibson F, Magrath DI (1969) The Isolation and Characterization of a Hydroxamic Acid (Aerobactin) Formed by Aerobacter aerogenes 62-I. Biochim Biophys Acta 192: 175

    CAS  Google Scholar 

  148. Gilis A, Khan MA, Cornelis P, Meyer JM, Mergeay M, van der Lelie D (1996) Siderophore-mediated Iron Uptake in Alcaligenes eutrophus CH34 and Identification of aleB Encoding the Ferric Iron-Alcaligin E Receptor. J Bacteriol 178: 5499

    CAS  Google Scholar 

  149. Gipp S, Hahn J, Taraz K, Budzikiewicz H (1991) Zwei Pyoverdine aus Pseudomonas aeruginosa R. Z Naturforsch 46c: 534

    CAS  Google Scholar 

  150. Gobin J, Moore CH, Reeve JR Jr, Wong DK, Gibson BW, Horwitz MA (1995) Iron Acquisition by Mycobacterium tuberculosis: Isolation and Characterization of a Family of Iron-binding Exochelins. Proc Natl Acad Sci USA 92: 5189

    CAS  Google Scholar 

  151. Greenwald J, Nader M, Celia H, Gruffaz C, Geoffroy V, Meyer JM, Schalk IJ, Pattus F (2009) FpvA Bound to Non-cognate Pyoverdines: Molecular Basis of Siderophore Recognition by an Iron Transporter. Mol Microbiol 72: 1246

    CAS  Google Scholar 

  152. Griffiths GL, Sigel SP, Payne SM, Neilands JB (1984) Vibriobactin, a Siderophore from Vibrio cholerae. J Biol Chem 10: 383

    Google Scholar 

  153. Gwose I, Taraz K (1992) Pyoverdine aus Pseudomonas putida. Z Naturforsch 47c: 487

    Google Scholar 

  154. Haag H, Fiedler HP, Meiwes J, Drechsel H, Jung G, Zähner H (1994). Isolation and Biological Characterization of Staphyloferrin B, a Compound with Siderophore Activity from Staphylococci. FEMS Microbiol Lett 115: 125

    CAS  Google Scholar 

  155. Hahn FE, McMurry TJ, Hugi A, Raymond KN (1990) Coordination Chemistry of Microbial Iron Transport. 42. Structural and Spectroscopic Characterization of Diastereomeric Cr(III) and Co(III) Complexes of Desferriferrithiocin. J Am Chem Soc 112: 1854

    CAS  Google Scholar 

  156. Hancock DK (1991) Isolation and Structure of a Unique Pyoverdine-type Siderophore Containing l-threo-β-Hydroxyhistidine. Ph.D Thesis, University of Maryland

    Google Scholar 

  157. 133. Hancock DK, Coxon B, Wang SY, White VE, Reeder DJ, Bellama JM (1993) l-threo-β-Hydroxyhistidine, an Unprecedented Iron (III) Ion-Binding Amino Acid in a Pyoverdine-Type Siderophore from Pseudomonas fluorescens 244. J Chem Soc Chem Commun 468

    Google Scholar 

  158. Hancock DK, Reeder DJ (1993) Analysis and Configuration Assignment of the Amino Acids in a Pyoverdine-Type Siderophore by Reversed-Phase High-Performance Liquid Chromatography. J Chromatogr 646: 335

    CAS  Google Scholar 

  159. Hantke K, Nicholson G. Rabsch W, Winkelmann G (2003) Salmochelins, Siderophores of Salmonella enterica and Uropathogenic Escherichia coli Strains, are Recognized by the Outer Membrane Receptor Iron. Proc Natl Acad Sci USA 100: 3677

    CAS  Google Scholar 

  160. Harada K, Tomita K, Fujii K, Masuda K, Mikami Y, Yazawa K, Komaki H (2004) Isolation and Structural Characterization of Siderophores, Madurastatins, Produced by a Pathogenic Actinomadura madurae. J Antibiot 57: 125

    CAS  Google Scholar 

  161. Harrington, JM, Crumbliss AL (2009) The Redox Hypothesis in the Siderophore-mediated Iron Uptake. Biometals 22: 679

    CAS  Google Scholar 

  162. Harris WR, Carrano CJ, Raymond KN (1979) Coordination Chemistry of Microbial Iron Transport Compounds. 16. Isolation, Characterization, and Formation Constants of Ferric Aerobactin. J Am Chem Soc 101: 2722

    CAS  Google Scholar 

  163. Haselwandter K, Dobernigg B, Beck W, Jung G, Cansier A, Winkelmann G (1992) Isolation and Identification of Hydroxamate Siderophores of Ericoid Mycorrhizal Fungi. BioMetals 5: 51

    CAS  Google Scholar 

  164. Hayen H, Volmer DA (2006) Different Iron-chelating Properties of Pyochelin Diastereoisomers Revealed by LC/MS. Anal Bioanal Chem 385: 606

    CAS  Google Scholar 

  165. Haygood MG, Holt PD, Butler A (1993) Aerobactin Production by a Planctonic Marine Vibrio sp. Limnol Oceanogr 38: 1091

    Google Scholar 

  166. Hersman LE, Huang A, Maurice PA, Forsythe JH (2000) Siderophore Production and Iron Reduction by Pseudomonas mendocina in Response to Iron Deprivation. Geomicrobiology J 17: 261

    CAS  Google Scholar 

  167. Hickford SHJ, Küpper FC, Zhang G, Carrano CJ, Blunt JW, Butler A (2004) Petrobactine Sulfonate, a New Siderophore Produced by the Marine Bacterium Marinobacter hydrocarbonoclasticus. J Nat Prod 67: 1897

    CAS  Google Scholar 

  168. Hildebrand U, Lex J, Taraz K, Winkler S, Ockels W, Budzikiewicz H (1984) Untersuchungen zum Redox-System Bis(pyridin-2,6-dicarbothioato)-ferrat(II)/ferrat(III). Z Naturforsch 39b: 1607

    CAS  Google Scholar 

  169. Hildebrand U, Taraz K, Budzikiewicz H (1986) 6-(Hydroxythio)carbonylpyridin-2-carbonsäure und Pyridin-2-carbonsäure-6-monothiocarbonsäure als biosynthetische Zwischenstufen bei der Bildung von Pyridin-2,6-di(monothiocarbonsäure) aus Pyridin-2,6-dicarbonsäure. Z Naturforsch 41c: 691

    Google Scholar 

  170. Hildebrand U, Taraz K, Budzikiewicz H, Korth H, Pulverer G. (1985) Dicyano-bis(pyridin-2,6-dicarbothioato)-ferrat (II)/ferrat (III), ein weiteres eisenhaltiges Redoxsystem aus der Kulturlösung eines Pseudomonas-Stammes. Z Naturforsch 40c: 201

    CAS  Google Scholar 

  171. Hoegy F, Celia H, Mislin GL Vicent M, Gallay J, Schalk IJ (2005) Binding of Iron-free Siderophore, a Common Feature of Siderophore Outer Membrane Transporters of Escherichia coli and Pseudomonas aeruginosa. J Biol Chem 280: 20222

    CAS  Google Scholar 

  172. Hohlneicher U, Hartmann R, Taraz K, Budzikiewicz H (1995) Pyoverdin, Ferribactin, Azotobactin – a new Triad of Siderophores from Pseudomonas chlororaphis ATTC 9446 and its Relation to Pseudomonas fluorescens ATCC 13525. Z Naturforsch 50c: 337

    Google Scholar 

  173. Holinsworth B, Martin JD (2009) Siderophore Production by Marine-derived Fungi. Biometals 22: 625

    CAS  Google Scholar 

  174. Holt PD, Reid RR, Lewis BL, Luther GW iii, Butler A (2005) Iron(III) Coordination Chemistry of Alterobactin A: a Siderophore from the Marine Bacterium Alteromonas luteoviolacea. Inorg Chem 44: 7671

    CAS  Google Scholar 

  175. Homann VV, Edwards KJ, Webb EA, Butler A (2009) Siderophores of Marinobacter aquaeolei: Petrobactin and its Sulfonated Derivatives. Biometals 22: 565

    CAS  Google Scholar 

  176. Homann VV, Sandy M, Tincu JA, Templeton AS, Tebo BM, Butler A (2009) Loihichelins A-F, a Suite of Amphiphilic Siderophores Produced by the Marine Bacterium Halomonas LOB-5. J Nat Prod 72: 884

    CAS  Google Scholar 

  177. Hopkinson BM, Morel FMM (2009) The Role of Siderophores in Iron Acquisition by Photosynthetic Marine Microorganisms. Biometals 22: 659

    CAS  Google Scholar 

  178. Hossein MB, Eng-Wilmot DL, Loghry RA, van der Helm D (1980) Circular Dichroism, Crystal Sructure, and Absolute Configuration of the Siderophore Ferric N,N′,N″-Triacetylfusarinine, FeC39H57N6O15. J Am Chem Soc 102: 5766

    Google Scholar 

  179. Hossein MB, Jalal MAF, Benson BA, Barnes CL, van der Helm D (1987) Structure and Conformation of Two Coprogen-type Siderophores: Neocoprogen I and Neocoprogen II. J Am Chem Soc 109: 4948

    Google Scholar 

  180. Hossein MB, Jalal MAF, van der Helm D (1986) The Structure of Ferrioxamine D1- Ethanol-Water (1/2/1) Acta Cryst C 42: 1305

    Google Scholar 

  181. Hossain MB, Jalal MAF, van der Helm D (1997) 6-l-Alanineferrirubin, a Ferrichrome-type from the Fungus Aspergillus ochraceous. Acta Cryst C 53: 716

    Google Scholar 

  182. Hossein MB, van der Helm D, Poling M (1983) The Structure of Deferriferrioxamine E (Norcardamin), a Cyclic Trihydroamate. Acta Cryst B 39: 258

    Google Scholar 

  183. Hou Z, Sunderland CJ, Nishio T, Raymond KN (1996) Preorganization of Ferric Alcaligin, Fe2L3. The First Structure of a Ferric Dihydroxamate Siderophore. J Am Chem Soc 118: 5148

    CAS  Google Scholar 

  184. Hough E, Rodgers D (1974) The Crystal Structure of Ferrimycobactin P, a Growth Factor for the Mycobacteria. Biochem Biophys Res Commun 57: 73

    CAS  Google Scholar 

  185. Howard DH (1999) Acquisition, Transport, and Storage of Iron by Pathogenic Fungi. Clin Microbiol Rev 12: 394

    CAS  Google Scholar 

  186. Howard DH, Rafie R, Tiwari A, Faull KF (2000) Hydroxamate Siderophores of Histoplasma capsulatum. Infect Immun 68: 2338

    CAS  Google Scholar 

  187. Hu X, Boyer GL (1995) Isolation and Characterization of the Siderophore N-Deoxyschizokinen from Bacillus megaterium ATCC 19213. BioMetals 8: 357

    CAS  Google Scholar 

  188. Hulcher FH (1982) Isolation and Characterization of a New Hydroxamic Acid from Pseudomonas mildenbergii. Biochemistry 21: 4491

    CAS  Google Scholar 

  189. Huschka HG, Jalal MAF, van der Helm D, Winkelmann G (1986) Molecular Recognition of Siderophores in Fungi: Role of Iron-surrounding N-Acyl Residues and the Peptide Backbone During Membrane Transport in Neurospora crassa. J Bacteriol 167: 1020

    CAS  Google Scholar 

  190. Huschka H, Naegeli HU, Leuenberger-Ryf H, Keller-Schierlein W, Winkelmann G (1985) Evidence for a Common Siderophore Transport System but Different Siderophore Receptors in Neurospora crassa. J Bacteriol 162: 715

    CAS  Google Scholar 

  191. Ino A, Hasegawa Y, Murabayashi A (1998) Total Synthesis of the Antimycoplasma Antibiotic Micacocidin. Tetrahedron Lett 39: 3509

    CAS  Google Scholar 

  192. Ino A, Hasegwa Y, Murabayashi A (1999) Synthetic Studies of Thiazoline- and Thiazolidine-Containing Natural Products. 2. Total Synthesis of Antimycoplasma Antibiotic Micacocidin. Tetrahedron 55: 10283

    CAS  Google Scholar 

  193. Inoue H, Takimura O, Kawaguchi K, Nitoda T, Fuse H, Murakami K, Yamaoka Y (2003) Tin-Carbon Cleavage of Organotin Compounds by Pyoverdine from Pseudomonas chlororaphis. Appl Environ Microbiol 69: 878

    CAS  Google Scholar 

  194. Ishimaru CA, Loper JE (1992) High-Affinity Iron Uptake Systems Present in Erwinia carotovora subsp. carotovora Include the Hydroxamate Siderophore Aerobactin. J Bacteriol 174: 2993

    CAS  Google Scholar 

  195. Ito T, Neilands JB (1958) Products of "Low-iron Fermentation" with Bacillus subtilis: Isolation, Characterization and Synthesis of 2,3-Dihydroxybenzoylglycine. J Am Chem Soc 80: 4645

    CAS  Google Scholar 

  196. Ito Y, Butler A (2005) Structure of Synechobactins, New Siderophores of the Marine Cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50: 1918

    CAS  Google Scholar 

  197. Ito Y, Ishida, K, Okada S, Murakami M (2004) The Absolute Stereochemistry of Anachelins, Siderophores from the Cyanobacterium Anabena cylindrica. Tetrahedron 60: 9075

    CAS  Google Scholar 

  198. Ito Y, Umino K, Sekiguchi T, Miyagishima T, Egawa Y (1971) Antibiotic YC 73 of Pseudomonas Origin. III. Synthesis of Thioformin Analogues. J Antibiot 24: 131

    CAS  Google Scholar 

  199. Itou Y, Okada S, Murakami M (2001) Two Structural Isomeric Siderophores from the Freshwater Cyanobacterium Anabena cylindrica (NIES-19). Tetrahedron 57: 9093

    CAS  Google Scholar 

  200. Jacques P, Ongena M, Gwose I, Seinsche D, Schröder H, Delphosse P, Thonart P, Taraz K, Budzikiewicz H (1995). Structure and Characterization of Isopyoverdin from Pseudomonas putida BTP1 and its Relation to the Biogenetic Pathway Leading to Pyoverdins. Z Naturforsch 50c: 622

    Google Scholar 

  201. Jalal MAF, Galles JL, van der Helm D (1985) Structure of Des(diserylglycyl)ferrirhodin, DDF, a Novel Siderophore from Aspergillus ochraceous. J Org Chem 50: 5642

    CAS  Google Scholar 

  202. Jalal MAF, Hossain MB, van der Helm D, Barnes CL (1988) Structure of Ferrichrome-type Siderophores with Dissimilar N δ-acyl Groups: Asperchrome B1, B2, B3, D1, D2 and D3. Biol Metals 1: 77

    CAS  Google Scholar 

  203. Jalal MAF, Hossain MB, van der Helm D, Sanders-Loehr J, Actis LA, Crosa JH (1989) Structure of Anguibactin, a Unique Plasmid-related Siderophore from Fish-pathogen Vibrio anguillarum. J Am Chem Soc 111: 292

    CAS  Google Scholar 

  204. Jalal MAF, Love SK, van der Helm D (1986) Siderophore Mediated Iron(III) Uptake in Gliocladium virens. 1. Properties of cis-Fusarinine, trans-Fusarinine, Dimerum Acid, and their Ferric Complexes. J Inorg Biochem 28: 417

    CAS  Google Scholar 

  205. Jalal MAF, Love SK, van der Helm D (1988) N α -Dimethylcoprogens. Three Novel Trihydroxamate Siderophores from Pathogenic Fungi. Biol Metals 1: 4

    CAS  Google Scholar 

  206. Jalal MAF, Mocharla R, Barnes CL, Hossain MB, Powell DR, Eng-Wilmot DL, Grayson SL, Benson BA, van der Helm D (1984) Extracellular Siderophores from Aspergillus ochraceous. J Bacteriol 158: 683

    CAS  Google Scholar 

  207. Jalal MAF, Mocharla R, van der Helm D (1984) Separation of Ferrichromes and Other Hydroxamate Siderophores of Fungal Origin by Reversed-phase Chromatography. J Chromatogr 301: 247

    CAS  Google Scholar 

  208. Jalal MAF, van der Helm D (1989) Siderophores of Highly Phytopathogenic Alternaria longipes. Structures of Hydroxycoprogens. Biol Metals 2: 11

    CAS  Google Scholar 

  209. Jalal MAF, van der Helm D (1991) Isolation and Spectroscopic Identification of Fungal Siderophores. In: Winkelmann G (ed) Handbook of Microbial Iron Chelates. CRC, Boca Raton, FL, p 235

    Google Scholar 

  210. Jones AM, Lindow SE, Wildermuth MC (2007) Salicylic Acid, Yersiniabactin, and Pyoverdin Production by the Model Phytopathogen Pseudomonas syringae pv. tomato DC3000: Synthesis, Regulation, and Impact on Tomato and Arabidopsis Host Plants. J Bacteriol 189: 6773

    CAS  Google Scholar 

  211. Jülich M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM, Gardan L (2001) The Structure of the Pyoverdin Isolated from Pseudomonas syringae Pathovars. Z Naturforsch 56c: 687

    Google Scholar 

  212. Kachadourian R, Dellagi A, Laurent J, Bricard L, Kunesch G, Expert D (1996) Desferrioxamine-dependent Iron Transport in Erwinia amylovora CFBP1430: Cloning of the Gene Encoding the Ferrioxamine Receptor FoxR. BioMetals 9: 143

    CAS  Google Scholar 

  213. Kameyama T, Takahashi A, Kurasawa S, Ishizuka M, Okami Y, Takeuchi T, Umezawa H (1987) Bisucaberin, a New Siderophore, Sensitizing Tumor Cells to Macrophage-mediated Cytolysis. I. Taxonomy of the Producing Organism, Isolation and Biological Properties. J Antibiotics 40: 1664

    CAS  Google Scholar 

  214. Kamnev AA (1998) Reductive Solubilization of Fe(III) by Certain Products of Plant and Microbial Metabolism as a Possible Alternative to Siderophore Secretion. Dokl Biophys 358 - 360, 48 (translation from Dokl Akad Nauk 359: 691).

    Google Scholar 

  215. Kanoh K, Kamino K, Leleo G, Adachi K, Shizuri Y (2003) Pseudoalterobactin A and B, New Sidrophores Excreted by Marine Bacterium Pseudoalteromonas sp. KP20-4. J Antibiotics 56: 871

    CAS  Google Scholar 

  216. Keller-Schierlein W, Deér A (1963) Stoffwechselprodukte von Mikroorganismen. 44. Mitteilung. Zur Konstitution von Ferrichrysin und Ferricrocin. Helv Chim Acta 46: 1907

    CAS  Google Scholar 

  217. Keller-Schierlein W, Diekmann H (1970) Stoffwechselprodukte von Mikroorganismen. 85. Mitteilung. Zur Konstitution des Coprogens. Helv Chim Acta 53: 2035

    CAS  Google Scholar 

  218. Keller-Schierlein W, Hagmann L, Zähner H, Huhn W (1988) Stoffwechselprodukte von Mikroorganismen. 250. Mitteilung. Maduraferrin, ein neuartiger Siderophor aus Actinomadura madurae. Helv Chim Acta 71: 1528

    CAS  Google Scholar 

  219. Keller-Schierlein W, Mertens P, Prelog V, Walser A (1965) Stoffwechselprodukte von Mikroorganismen. 49. Mitteilung. Die Ferrioxamine A1, A2 und D2. Helv Chim Acta 48: 710

    CAS  Google Scholar 

  220. Keller-Schierlein W, Prelog V (1961) Stoffwechselprodukte von Actinomyceten. 29. Mitteilung. Die Konstitution des Ferrioxamins D1. Helv Chim Acta 44: 709

    CAS  Google Scholar 

  221. Keller-Schierlein W, Prelog V (1961) Stoffwechselprodukte von Actinomyceten. 30. Mitteilung. Über das Ferrioxamin E; ein Beitrag zur Konstitution des Nocardamins. Helv Chim Acta 44: 1981

    CAS  Google Scholar 

  222. Keller-Schierlein W, Prelog V (1961) Stoffwechselprodukte von Actinomyceten. 34. Mitteilung. Ferrioxamin G. Helv Chim Acta 45: 590

    Google Scholar 

  223. Keller-Schierlein W, Prelog V, Zähner H (1964) Siderochrome (Natürliche Eisen(III)-trihydroxamat-Komplexe). Progr Chem Org Nat Prod 22: 279

    CAS  Google Scholar 

  224. Kilz S, Lenz C, Fuchs R, Budzikiewicz H (1999) A Fast Screening Method for the Identification of Siderophores from Fluorescent Pseudomonas spp. by Liquid Chromatography/Electrospray Mass Specrtrometry. J Mass Spectrom 34: 281

    CAS  Google Scholar 

  225. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas Siderophores: A Mechanism Explaining Disease-Suppressive Soils. Curr Microbiol 4: 317

    CAS  Google Scholar 

  226. Klumpp C, Burger A, Mislin GL, Abdallah MA (2005) From a Total Synthesis of Cepabactin and its 3:1 Ferric Complex to the Isolation of a 1:1:1 Mixed Complex between Iron (III), Cepabactin and Pyochelin. Bioorg Med Chem Lett 15: 1721

    CAS  Google Scholar 

  227. Kobayashi S, Hidaka S, Kawamura Y, Ozaki M, Hayase Y (1998) Micacocidin A, B and C, Novel Antimycoplasma Agents from Pseudomonas sp. I. Taxonomy, Fermentation, Isolation, Physico-chemical Properties and Biological Activities. J Antibiotics 51: 323

    CAS  Google Scholar 

  228. Kobayashi S, Nakai H, Ikenishi Y, Sun WY, Ozaki M, Hayase Y, Takeda R (1998) Micacocidin A, B and C, Novel Antimycoplasma Agents from Pseudomonas sp. II. Structure Elucidation. J Antibiotics 51: 328

    CAS  Google Scholar 

  229. Kokubo S, Suenaga K, Shinohara C, Tsuji T, Uemura D (2000) Structures of Amamistatins A and B, Novel Growth Inhibitors of Human Tumor Cell Lines from Nocardia asteroides. Tetrahedron 56: 6435

    CAS  Google Scholar 

  230. Konetschny-Rapp S, Huschka HG, Winkelmann G, Jung G (1988) High-performance Liquid Chromatography of Siderophores from Fungi. Biol Metals 1: 9

    CAS  Google Scholar 

  231. Konetschny-Rapp S, Jung G, Meiwes J, Zähner H (1900) Staphyloferrin A: a Structurally New Siderophore from Staphylococci. Eur J Biochem 191: 65

    Google Scholar 

  232. Konetschny-Rapp S, Jung G, Raymond KN, Meiwes J, Zähner H (1992) Solution Thermodynamics of the Ferric Complexes of New Desferrioxamine Siderophores by Directed Fermentation. J Am Chem Soc 114: 2224

    CAS  Google Scholar 

  233. Koppisch AT, Browder CC, Moe AL, Shelley JT, Kinkel BA, Hersman LE, Iyer S, Ruggiero CE (2005) Petrobactin is the Primary Siderophore Synthesized by Bacillus anthracis str. Sterne under Conditions of Iron Starvation. BioMetals 18: 577

    CAS  Google Scholar 

  234. Koppisch AT, Dhungana S, Hill KK, Boukhalfa H, Heine HS, Colip LA, Romero RB, Shou Y, Ticknor LO, Marrone BL, Hersman LE, Iyer S, Riggiero CE (2008) Petrobactin is Produced by Both Pathogenic and Non-pathogenic Isolates of the Bacillus cereus Group of Bacteria. Biometals 21: 581

    CAS  Google Scholar 

  235. Korth H (1970) Über das Vorkommen von 2,3-Dihydroxybenzoesäure und ihrer Aminosäurederivate in Kulturmedien von Klebsiella oxytoca. Arch Microbiol 70: 297

    CAS  Google Scholar 

  236. Kunze B, Bedorf N, Kohl W, Höfle G, Reichenbach H (1989) Myxochelin A, a New Iron-Chelating Compound from Angiococcus disciformis (Myxobacterales). Production, Isolation, Physicochemical and Biological Properties. J Antibiotics 42: 14

    CAS  Google Scholar 

  237. Kunze B, Trowitzsch-Kienast W, Höfle G, Reichenbach H (1992) Nannochelins A, B and C, New Iron Chelating Compounds from Nannocystis exedens (Myxobacteria). Production, Isolation, Physico-chemical and Biological Properties. J Antibiotics 45: 147

    CAS  Google Scholar 

  238. Lane SJ, Marshall PS, Upton RJ, Ratledge C, Ewing M (1995) Novel Extracellular Mycobactins, the Carboxymycobactins from Mycobacterium avium. Tetrahedron Lett 36: 4129

    CAS  Google Scholar 

  239. Lankford CE, Walker JR, Reeves JB, Nabbut NH, Byers BR, Jones RJ (1966) Inoculum-Dependent Division Lag of Bacillus Cultures and its Relation to an Endogenous Factor(s) ("Schizokinen"). J Bacteriol 91: 1070

    CAS  Google Scholar 

  240. Ledyard KM, Butler A (1997) Structure of Putrebactin, a New Dihydroxamate Siderophore Produced by Shewanella putrefaciens. J Biol Inorg Chem 2: 93

    CAS  Google Scholar 

  241. Lee BH, Miller MJ (1983) Natural Ferric Ionophores: Total Synthesis of Schizokinen, Schizokinen A, and Arthrobactin. J Org Chem 48: 24

    CAS  Google Scholar 

  242. Lee CH, Lewis TA, Paszczynski A, Crawford RL (1999) Identification of an Extracellular Catalyst of Carbon Tetrachloride Dehalogenation from Pseudomonas stutzeri Strain KC as Pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 261: 562

    CAS  Google Scholar 

  243. Leong SA, Winkelmann G (1998) Molecular Biology of Iron Transport in Fungi. In: Sigel A, Sigel H (eds) Metal Ions in Biological Systems. Marcel Dekker, New York, 147

    Google Scholar 

  244. Lesueur D, Diem HG, Meyer JM (1993) Iron Requirement and Siderophore Production in Bradyrhizobium Strains Isolated from Acacia mangium. J Appl Bacteriol 74: 675

    CAS  Google Scholar 

  245. Lewis TA, Crawford RL (1995) Transformation of Carbon Tetrachloride via Sulfur and Oxygen Substitution by Pseudomonas sp. Strain KC. J Bacteriol 177: 2204

    CAS  Google Scholar 

  246. Liles MR, Scheel TA, Cianciotto NP (2000) Discovery of a Nonclassical Siderophore, Legiobactin, Produced by Strains of Legionella pneumophila. J Bacteriol 182: 749

    CAS  Google Scholar 

  247. Linke WD, Crueger A, Diekmann H (1972) Stoffwechselprodukte von Mitroorganismen. 106. Mitteilung. Zur Konstitution des Terregens-Faktors. Arch Mikrobiol 85: 44

    CAS  Google Scholar 

  248. Liu WC, Fisher SM, Wells JS Jr, Ricca CS, Principe PA, Trejo WH, Bonner DP, Gougoutos JZ, Toeplitz BK, Sykes RB (1981) Siderochelin, a New Ferrous-ion Chelating Agent Produced by Nocardia. J Antibiot 34: 791

    CAS  Google Scholar 

  249. Llinás L, Neilands JB (1976) The Structure of Two Alanine Containing Ferrichromes: Sequence Determination by Proton Magnetic Resonance. Biophys Struct Mechanism 2: 105

    Google Scholar 

  250. Loomis LD, Raymond KN (1991) Solution Equilibria of Enterobactin and Metal-enterobactin Complexes. Inorg Chem 30: 906

    CAS  Google Scholar 

  251. Luo M, Fadeev EA, Groves JT (2005) Membrane Dynamics of the Amphiphilic Siderophore, Acinetoferrin. J Am Chem Soc 127: 1726

    CAS  Google Scholar 

  252. MacDonald JC, Bishop GG (1984) Spectral Properties of a Mixture of Fluorescent Pigments Produced by Pseudomonas aeruginosa. Biochim Biophys Acta 800: 11

    CAS  Google Scholar 

  253. Maksimova NP, Blazhevich OV, Lysak VV, Fomichev YuK (1994) Characteristics of fluorescent pigment pyoverdin Pm produced by Pseudomonas putida bacteria. Microbiology 63: 587 (Russian original:Mikrobiologia 63: 1038)

    CAS  Google Scholar 

  254. Marshall B, Stintzi A, Gilmour C, Meyer JM, Poole K (2009) Citrate-mediated Iron-uptake in Pseudomonas aeruginosa: Involvement of the Citrate-inducible FecA Receptor and the FeoB Ferrous Iron Transporter. Microbiology 155: 305

    CAS  Google Scholar 

  255. Martin JD, Ito Y, Homann VV, Haygood MG, Butler A (2006) Structure and Membrane Affinity of New Amphiphilic Siderophores Produced by Ochrobactrum sp. SP18. J Biol Inorg Chem 11: 633

    CAS  Google Scholar 

  256. Martinez JS, Butler A (2007) Marine Amphiphilic Siderophores: Marinobactin Structure, Uptake, and Microbial Partitioning. J Inorg Biochem 101: 1692

    CAS  Google Scholar 

  257. Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Structure and Membrane Affinity of a Suite of Amphiphilic Siderophores Produced by a Marine Bacterium. Proc Natl Acad Sci USA 100: 3754

    CAS  Google Scholar 

  258. Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Self-assembling Amphiphilic Siderophores from Marine Bacteria. Science 287: 1245

    CAS  Google Scholar 

  259. Matthijs S, Budzikiewicz H, Schäfer M, Wathelet B, Cornelis P (2008) Ornicorrugatin, a New Siderophore from Pseudomonas fluorescens AF76. Z Naturforsch 63c: 8

    Google Scholar 

  260. Matthijs S, Laus G, Meyer JM, Abbaspour-Tehrani K, Schäfer M, Budzikiewicz H, Cornelis P (2009) Siderophore-mediated Iron Acquisition in the Entomopathogenic Bacterium Pseudomonas entomophila L48 and its Close Relative Pseudomonas putida KT2440. Biometals 22: 951

    CAS  Google Scholar 

  261. Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas Siderophore with Antifungal and anti-Pythium Activity. Environ Microbiol 9: 425

    CAS  Google Scholar 

  262. Maurer B, Müller A, Keller-Schierlein W, Zähner H (1968) Stoffwechselprodukte von Mikroorganismen. 61. Ferribactin, ein Siderochrom aus Pseudomonas fluorescens Migula. Arch Microbiol 60: 326

    CAS  Google Scholar 

  263. Maurer PJ, Miller MJ (1982) Microbial Iron Chelators: Total Synthesis of Aerobactin and its Constituent Amino Acid, N 6-Acetyl-N 6-hydroxylysine. J Am Chem Soc 104: 3096

    CAS  Google Scholar 

  264. May JJ, Wendrich TM, Mahariel MA (2001) The dhb Operon of Bacillus subtilis Encodes the Biosynthetic Template for the Catecholic Siderophore 2,3-Dihydroxybenzoate-glycine-threonine Trimeric Ester Bacillibactin. J Biol Chem 276: 7209

    CAS  Google Scholar 

  265. McCullough WG, Merkal RS (1982) Structure of Mycobactin J. Curr Microbiol 7: 337

    CAS  Google Scholar 

  266. McDougall S, Neilands JB (1984) Plasmid- and Chromosome-coded Aerobactin Synthesis in Enteric Bacteria: Insertion Sequences Flank Operon in Plasmid-mediated Systems. J Bacteriol 159: 300

    CAS  Google Scholar 

  267. Meiwes J, Fiedler HP, Haag H, Zähner H, Konetschny-Rapp S, Jung G (1990) Isolation and Characterization of Staphyloferrin A, a Compound with Siderophore Activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett 67: 201

    CAS  Google Scholar 

  268. Meiwes J, Fiedler HP, Zähner H, Konetschny-Rapp S, Jung G (1990) Production of Desferrioxamine E and New Analogues by Directed Fermentation and Feeding Fermentation. Appl Microbiol Biotechnol 32: 505

    CAS  Google Scholar 

  269. Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB Gene Cluster Involved in Biosynthesis of Salicylic Acid and the Siderophore Pseudomonine in the Biocontrol Strain Pseudomonas fluorescens WCS374. J Bacteriol 183: 1909

    CAS  Google Scholar 

  270. Messenger AJM, Ratledge C (1982) Iron Transport in Mycobacterium smegmatis: Uptake of Iron from Ferric Citrate. J Bacteriol 149: 131

    CAS  Google Scholar 

  271. Meyer JM (2000) Pyoverdines: Pigments, Siderophores and Potential Taxonomic Markers of Fluorescent Pseudomonas Species. Arch Microbiol 174: 135

    CAS  Google Scholar 

  272. Meyer JM, Abdallah MA (1980) The Siderochromes of Non-fluorescent Pseudomonads: Production of Norcardamine by Pseudomonas stutzeri. J Gen Microbiol 118: 125

    CAS  Google Scholar 

  273. Meyer JM, Azelvandre P, Georges C (1992). Iron Metabolism in Pseudomonas: Salicylic Acid, a Siderophore of Pseudomonas fluorescens CHAO. BioFactors 4: 23

    CAS  Google Scholar 

  274. Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz, H (2008) Siderotyping of Fluorescent Pseudomonas: Molecular Mass Determination by Mass Spectrometry as a Powerful Pyoverdine Siderotyping Method. Biometals 21: 259

    CAS  Google Scholar 

  275. Meyer JF, Hohnadel D, Hallé F (1989) Cepabactin from Pseudomonas cepacia, a New Type of Siderophore. J Gen Microbiol 135: 1479

    CAS  Google Scholar 

  276. Meyer JM, Stintzi A, Coulanges V, Shivaji S, Voss JA, Taraz K, Budzikiewicz H (1998) Siderotyping of Fluorescent Pseudomonads: Characterization of Pyoverdines of Pseudomonas fluorescens and Pseudomonas putida Strains from Antarctica. Microbiology 144: 3119

    CAS  Google Scholar 

  277. Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of Siderophores to Type Pseudomonads: the Three Pseudomonas aeruginosa Pyoverdine Systems. Microbiology 143: 35

    CAS  Google Scholar 

  278. Meyer JM, Van VT, Stintzi A, Berge O, Winkelmann G (1995) Ornibactin Production and Transport Properties in Strains of Burkholderia vietnamensis and Burkholderia cepacia (formerly Pseudomonas cepacia). BioMetals 8: 309

    CAS  Google Scholar 

  279. Michalke R, Taraz K, and Budzikiewicz H (1996) Azoverdin – an Isopyoverdin. Z Naturforsch 51c: 772

    Google Scholar 

  280. Milewska MJ, Chimiak A, Glowacki Z (1987) Synthesis of Shizokinen, Homoschizokinen, its Imide and the Detection of Imide with 13C-N.M.R.-Spectroscopy. J Prakt Chem 329: 447

    CAS  Google Scholar 

  281. Miller MC, Parkin S, Fetherston JD, Perry RD, DeMoll E (2006) Crystal Structure of Ferric-yersiniabactin, a Virulence Factor of Yersinia pestis. J Inorg Biochem 100: 1495

    CAS  Google Scholar 

  282. Mitscher LA, Högberg T, Drake SD, Burgstahler AW, Jackson M, Lee B, Sheldon RI, Gracey HE, Kohl W, Theriault RJ (1984) Isolation and Structural Determination of Siderochelin C, a Fermentation Product of an Unusual Actinomycetes sp. J Antibiotics 37:1260

    Google Scholar 

  283. Miyanaga S, Obata T, Onaka H, Fujita T, Saito N, Sakurai H, Saiki I, Furumai T, Igarashi Y (2006) Absolute Configuration and Antitumor Activity of Myxochelin A Produced by Nonomuraea pusilla TP-A0861. J Antibiotics 59: 698

    CAS  Google Scholar 

  284. Modi M, Shah KS, Modi VV (1985) Isolation and Characterization of Catechol-like Siderophore from Cowpea Rhizobium RA-1. Arch Microbiol 141: 156

    CAS  Google Scholar 

  285. Mohn G, Koehl P, Budzikiewicz H, Lefèvre JF (1994) Solution Structure of Pyoverdin GM-II. Biochemistry 33: 2843

    CAS  Google Scholar 

  286. Mohn G, Taraz K, Budzikiewicz H (1990) New Pyoverdin-Type Siderophores from Pseudomonas fluorescens. Z Naturforsch 45b: 1437

    Google Scholar 

  287. Moll H, Glorius M, Bernhard G, Johnsson A, Pedersen K, Schäfer M, Budzikiewicz H (2008) Characterization of Pyoverdins Secreted by a Subsurface Strain of Pseudomonas fluorescens and their Interactions with Uranium(VI). Geomicrobiol J 25: 157

    CAS  Google Scholar 

  288. Moore RE, Emery T (1976) N α-Acetylfusarinines: Isolation, Characterization, and Properties. Biochemistry 15: 2719

    CAS  Google Scholar 

  289. Moore CH, Foster LA, Gerbig DG Jr, Dyer DW, Gibson BW (1995) Identification of Alcaligin as the Siderophore Produced by Bordetella pertussis and B. bronchiseptica. J Bacteriol 177: 1116

    CAS  Google Scholar 

  290. Mossialos D, Meyer JM, Budzikiewicz H, Wolf U, Koedam N, Baysse C, Anjaiah V, Cornelis P (2000) Quinolobactin, a New Siderophore of Pseudomonas fluorescens ATCC 17400, the Production of which is Repressed by the Cognate Pyoverdine. Appl Environ Microbiol 66: 487

    CAS  Google Scholar 

  291. Mukai A, Fukai T, Matsumoto Y, Ishikawa J, Hoshino Y, Yazawa K, Harada K, Mikami Y (2006) Transvalencin Z, a New Antimicrobial Compound with Salicylic Acid Residue from Nocardia transvalensis IFM 10065. J Antibiotics 59: 366

    Google Scholar 

  292. Mulet M, Gomila M, Gruffaz C, Meyer JM, Palleroni NJ, Lalucat J, García-Valdéz E (2008) Phylogenetic Analysis and Siderotyping as Useful Tools in the Taxonomy of Pseudomonas stutzeri: Description of a Novel Genovar. Int J System Evol Microbiol 58: 2309

    CAS  Google Scholar 

  293. Müller A, Zähner H (1968) Stoffwechselprodukte von Mikroorganismen. 65. Mitteilung. Ferrioxamine aus Eubacteriales. Arch Microbiol 62: 257

    Google Scholar 

  294. Müller SI, Valdebenito M, Hantke K (2009) Salmochelin, the Long-overlooked Catecholate Siderophore of Salmonella. Biometals 22: 691

    Google Scholar 

  295. Mullis KB, Pollack JR, Neilands JB (1971) Structure of Schizokinen, an Iron Transport Compound from Bacillus megaterium. Biochemistry 10: 4894

    CAS  Google Scholar 

  296. Münzinger M, Budzikiewicz H, Expert D, Enard C, Meyer JM (2000) Achromobactin, a New Citrate Siderophore of Erwinia chrysanthemi. Z Naturforsch 55c: 328

    Google Scholar 

  297. Münzinger M, Taraz K, Budzikiewicz H (1999) Staphyloferrin B, a Citrate Siderophore from Ralstonia eutropha. Z Naturforsch 54c: 867

    Google Scholar 

  298. Münzinger M, Taraz K, Budzikiewicz H, Drechsel H, Heymann P, Winkelmann G, Meyer JM (1999). S,S-Rhizoferrin (enantio-rhizoferrin) a Siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297 – the Optical Antipode of R,R-Rhizoferrin Isolated from Fungi. BioMetals 12: 189

    Google Scholar 

  299. Murakami Y, Kato S, Nakajima M, Matsuoka M, Kawai H, Shin-Ya K, Seto H (1996) Formobactin, a Novel Free Radical Scavenging and Neuron Cell Protecting Substance from Nocardia sp. J Antibiotics 49: 839

    CAS  Google Scholar 

  300. Naegli HU, Keller-Schierlein W (1978) Stoffwechselprodukte von Mikroorganismen. 174. Mitteilung. Eine neue Synthese des Ferrichroms; enantio-Ferrichrom. Helv Chim Acta 61: 2088

    Google Scholar 

  301. Naegeli HU, Zähner H (1980) Stoffwechselprodukte von Mikroorganismen. 193. Mitteilung. Ferrithiocin. Helv Chim Acta 63: 1400

    CAS  Google Scholar 

  302. 255. Nagao Y, Miyasaka T, Hagiwara Y, Fujita E 1984 Total Synthesis of Parabactin, a Spermidine Siderophore. J Chem Soc Perkin Trans I 183

    Google Scholar 

  303. Neilands JB (1981) Microbial Iron Compounds. Ann Rev Biochem 50: 715

    CAS  Google Scholar 

  304. Neilands JB, Ericson TJ, Rastetter WH (1981) Stereospecifity of the Ferric Enterobactin Receptor of Escherichia coli K-12. J Biol Chem 256: 3831

    CAS  Google Scholar 

  305. Nemoto A, Hoshino Y, Yazawa K, Ando A, Mikami Y, Komaki H, Tanaka Y, Gräfe U (2002) Asterobactin, a New Siderophore Group Antibiotic from Nocardia asteroides. J Antibiotics 55: 593

    CAS  Google Scholar 

  306. Neuenhaus W, Budzikiewicz H, Korth H, Pulverer G (1980) 8-Hydroxy-4-methoxymonothiochinaldinsäure – eine weitere Thiosäure aus Pseudomonas. Z Naturforsch 35b: 1569

    CAS  Google Scholar 

  307. Newkirk JD, Hulcher FH (1969) Isolation and Properties of a Fluorescent Pigment from Pseudomonas mildenbergii. Arch Biochem Biophys 134: 395

    CAS  Google Scholar 

  308. Nishio T, Tanaka N, Hiratake J, Katsube Y, Ishida Y, Oda J (1988) Isolation and Structure of the Novel Dihydroxamate Siderophore Alcaligin. J Am Chem Soc 110: 8733

    CAS  Google Scholar 

  309. O’Brian IG, Gibson F (1970) The Structure of Enterochelin and Related 2,3-Dihydroxy-N-benzoylserine Conjugates from Escherichia coli. Biochem Biophys Acta 215: 393

    Google Scholar 

  310. 262. Ockels W, Römer A, Budzikiewicz H, Korth H, Pulverer G (1978) An Fe(II) Complex of Pyridine-2,6-di(monothiocarboxylic acid) – a Novel Bacterial Metabolic Product. Tetrahedron Lett 3341

    Google Scholar 

  311. Ohfune Y, Tomita M (1982) Total Synthesis of (−)-Domoic acid. A Revision of the Original Structure. J Am Chem Soc 104: 3511

    CAS  Google Scholar 

  312. Okujo N, Saito M, Yamamoto S, Yoshida T, Miyoshi S, Shinoda S (1994) Structure of Vulnibactin, a New Polyamine-containing Siderophore from Vibrio vulnificus. BioMetals 7: 109

    CAS  Google Scholar 

  313. Okujo N, Sakakibara Y, Yoshida T, Yamamoto S. (1994) Structure of Acinetoferrin, a New Citrate-based Dihydroxamate Siderophore from Acinetobacter haemolyticus. BioMetals 7: 170

    CAS  Google Scholar 

  314. Okujo N, Yamamoto S (1994) Identification of the Siderophores from Vibrio hollisae and Vibrio mimicus as Aerobactin. FEMS Microbial Lett 118: 187

    CAS  Google Scholar 

  315. Okuyama D, Nakamura H, Naganawa H, Takita T, Umezawa H, Iitaka, Y (1982) Isolation, Racemization and Absolute Configuration of Siderochelin A. J Antibiotics 35: 1240

    CAS  Google Scholar 

  316. Ong SA, Peterson T, Neilands JB (1979) Agrobactin, a Siderophore from Agrobacterium tumefaciens. J Biol Chem 25: 1860

    Google Scholar 

  317. Ongena M, Jacques P, Delfosse P, Thonart P (2002) Unusual Traits of the Pyoverdin-Mediated Iron Acquisition System in Pseudomonas putida Strain BTP1. BioMetals 15: 1

    CAS  Google Scholar 

  318. Ongena M, Jacques P, Thonart P, Gwose I, Uría Fernández D, Schäfer M, Budzikiewicz H (2001) The Pyoverdin of Pseudomonas fluorescens BTP2, a Novel Structural Type. Tetrahedron Lett 42: 5849

    CAS  Google Scholar 

  319. Ongena M, Jacques P, van Vyncht G, Charlier P, de Pauw E, Thonart P, Budzikiewicz H (1998) Structural Analysis of Two Pyoverdins by Electrospray and FAB Mass Spectrometry. J Mass Spectrom Soc Jpn 46: 53

    CAS  Google Scholar 

  320. Page WJ, Collinson SK, Demange P, Dell A, Abdallah MA (1991) Azotobacter vinelandii Strains of Disparate Origin Produce Azotobactin Siderophores with Identical Structures. Biol Metals 4: 217

    CAS  Google Scholar 

  321. Page WJ, von Tigerstrom M (1988) Aminochelin, a Catecholamine Siderophore Produced by Azotobacter vinelandii. J Gen Microbiol 134: 453

    CAS  Google Scholar 

  322. Pakchung AAH, Soe CZ, Codd R (2008) Studies of Iron-uptake Mechanisms in Two Bacterial Species of the Shewanella Genus Adapted to Middle-range (Shewanella putrefaciens) or Antarctic (Shewanella gelidimarina) Temperatures. Chem Biodivers 5: 2113

    CAS  Google Scholar 

  323. Patel HM, Tao J, Walsh CT (2003) Epimerization of an l-Cysteinyl to a d-Cysteinyl Residue during Thiazoline Ring Formation in Siderophore Chain Elongation by Pyochelin Synthetase from Pseudomonas aeruginosa. Biochem 42: 10514

    CAS  Google Scholar 

  324. Patel HN, Chakraborty RN, Desai SB (1988) Isolation and Partial Characterization of Phenolate Siderophore from Rhizobium leguminosarum IARI 102. FEMS Microbiol Lett 56: 131.

    CAS  Google Scholar 

  325. Pattus F, Abdallah MA (2000) Siderophores and Iron-transport in Microorganisms. J Chin Chem Soc 47: 1

    CAS  Google Scholar 

  326. Payne SM, Niesel DW, Peixotto SS, Lawlor KM (1983) Expression of Hydroxamate and Phenolate Siderophores by Shigella flexneri. J Bacteriol 155: 949

    CAS  Google Scholar 

  327. Persmark M, Expert D, Neilands JB (1989) Isolation, Characterization, and Synthesis of Chrysobactin, a Compound with Siderophore Activity from Erwinia chrysanthemi. J Biol Chem 264: 3187

    CAS  Google Scholar 

  328. Persmark M, Frejd T, Mattiasson B (1990) Purification, Characterization, and Structure of Pseudobactin 589A, a Siderophore from a Plant Growth Promoting Pseudomonas. Biochemistry 29: 7348

    CAS  Google Scholar 

  329. Persmark M, Neilands JB (1992) Iron(III) Complexes of Chrysobactin, the Siderophore of Erwinia chrysanthemi. BioMetals 5: 29

    CAS  Google Scholar 

  330. Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR Jr, Neilands JB (1993) Isolation and Structure of Rhizobactin 1021, a Siderophore from the Alfalfa Symbiont Rhizobium meliloti 1021. J Am Chem Soc 115: 3950

    CAS  Google Scholar 

  331. Peters WJ, Warren RAJ (1968) Itoic Acid Synthesis in Bacillus subtilis. J Bacteriol 95: 360

    CAS  Google Scholar 

  332. Peterson T, Falk KE, Leong SA, Klein MP, Neilands JB (1980). Structure and Behavior of Spermidine Siderophores. J Am Chem Soc 102: 7715

    CAS  Google Scholar 

  333. 284. Peterson T, Neilands JB (1979) Revised Structure of a Catecholamide Spermidine Siderophore from Paracoccus denitrificans. Tetrahedron Lett 4805

    Google Scholar 

  334. Plowman JE, Loehr TM, Goldman SJ, Sanders-Loehr J (1984) Structure and Siderophore Activity of Ferric Schizokinen. J Inorg Biochem 20: 183

    CAS  Google Scholar 

  335. Pollak JR, Neilands JB (1970) Enterobactin, an Iron Transport Compound from Salmonella typhimurium. Biochem Biophys Res Commun 38: 989

    Google Scholar 

  336. Poppe K, Taraz K, Budzikiewicz H (1987) Pyoverdine Type Siderophores from Pseudomonas fluorescens. Tetrahedron 43: 2261

    CAS  Google Scholar 

  337. Pouteau-Thouvenot M, Gaudemer A, Barbier M (1968). Structure chimique de la pro-ferrorosamine. Bull Soc Chim Biol 50: 222

    CAS  Google Scholar 

  338. Quadri LEN, Keating TA, Patel HM, Walsh CT (1999) Assembly of Pseudomonas aeruginosa Nonribosomal Peptide Siderophore Pyochelin: in vitro Reconstitution of Aryl-4, 2-bisthiazoline Synthetase Activity from PchD, PchE, and PChF. Biochemistry 38: 14941

    CAS  Google Scholar 

  339. Rabsch W, Paul P, Reissbrodt R (1986) DHBA (2,3-Dihydroxybenzoesäure)-Ausscheidung durch einen enterobactinnegativen multiresistenten Salmonella typhimurium-Wildstamm. J Basic Microbiol 26: 113

    CAS  Google Scholar 

  340. Rabsch W, Paul P, Reissbrodt R (1987) A New Hydroxamate Siderophore for Iron Supply of Salmonella. Acta Microbiol Hungar 34: 85

    CAS  Google Scholar 

  341. Ratledge C (1964) Relationship between the Products of Aromatic Biosynthesis in Mycobacterium smegmatis and Aerobacter aerogenes. Nature 203: 428

    CAS  Google Scholar 

  342. Ratledge C, Ewing M (1996) The Occurrence of Carboxymycobactin, the Siderophore of Pathogenic Mycobacteria, as a Second Extracellular Siderophore in Mycobacterium smegmatis. Microbiology 142: 2207

    CAS  Google Scholar 

  343. Ratledge C, Marshall BJ (1972) Iron Transport in Mycobacterium smegmatis: the Role of Mycobactin. Biochim Biophys Acta 279: 58

    CAS  Google Scholar 

  344. Ratledge C, Patel PV (1976) The Isolation, Properties and Taxonomic Relevance of Lipid-soluble, Iron-binding Compounds (the Nocobactins) from Nocardia. J Gen Microbiology 93: 141

    CAS  Google Scholar 

  345. Ratledge C, Snow GA (1974) Isolation and Structure of Nocobactin NA, a Lipid-soluble Iron-binding Compound from Nocardia asteroides. Biochem J 139: 407

    CAS  Google Scholar 

  346. Raymond KN, Carrano CJ (1979) Coordination Chemistry and Microbial Iron Transport. Acc Chem Res 12: 183

    CAS  Google Scholar 

  347. Regenhardt D, Heuer H, Heim S, Fernández DU, Strömpl C, Moore ERB, Timmis KN (2002) Pedigree and Taxonomic Credentials of Pseudomonas putida Strain KT2440. Environ Microbiol 4: 912

    CAS  Google Scholar 

  348. Reid RT, Live DH, Faulkner DJ, Butler A (1993) A Siderophore from a Marine Bacterium with an Exceptional Ferric Ion Affinity Constant. Nature 366: 455

    CAS  Google Scholar 

  349. Reissbrodt R, Ramiandrasoa F, Bricard L, Kunesch G (1997) Siderophore Activity of Chemically Synthesized Dihydroxybenzoyl Derivatives of Spermidines and Cystamide. BioMetals 10: 95

    CAS  Google Scholar 

  350. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal Siderophores: Structures, Functions and Application. Mycol Res 106: 1123

    CAS  Google Scholar 

  351. Rinehart KL, Staley AL, Wilson SR, Ankenbauer RG, Cox CD (1995) Stereochemical Assignment of the Pyochelins. J Org Chem 60: 2786

    CAS  Google Scholar 

  352. Risse D, Beiderbeck H, Taraz K, Budzikiewicz H, Gustin D (1998) Corrugatin, a Lipopeptide Siderophore from Pseudomonas corrugata. Z Naturforsch 53c: 295

    Google Scholar 

  353. Robinson JP, Wawrousek EF, McArdle JV, Coyle G, Adler I (1984) X-ray Photoelectron and Electron Spin Resonance Spectra of Iron(III) Parabactin. Inorg Chim Acta 92: L19

    Google Scholar 

  354. Ruangviryachai C, Barelmann I, Fuchs R, Budzikiewicz H (2000) An Exceptionally Large Pyoverdin from a Pseudomonas Strain Collected in Thailand. Z Naturforsch 55c: 323

    Google Scholar 

  355. Ruangviriyachai C, Uría Fernández D, Fuchs R, Meyer JM, Budzikiewicz H (2001) A New Pyoverdin from Pseudomonas aeruginosa R’. Z Naturforsch 56c: 933

    Google Scholar 

  356. Ruangviriyachai C, Uría Fernández D, Schäfer M, Budzikiewicz H (2004) Structure Proposal for a New Pyoverdin from a Thai Pseudomonas putida Strain. Spectroscopy 18: 453

    CAS  Google Scholar 

  357. Rue E, Bruland K (2001) Domoic Acid Binds Iron and Copper: a Possible Role for the Toxin Produced by the Marine Diatom Pseudo-nitzschia. Mar Chem 76: 127

    CAS  Google Scholar 

  358. 308. Sakakura A, Umemura S, Ishihara K (2008) Convergent Total Syntheses of Fluvibactin and Vibriobactin Using Molybdenum(vi) Oxide-catalyzed Dehydrative Cyclization as a Key Step. Chem Commun 3561

    Google Scholar 

  359. Salah-el-Din ALM, Kyslík P, Stephan D, Abdallah MA (1997) Bacterial Iron Transport: Structure Elucidation by FAB-MS and by 2D NMR (1H, 13C, 15N) of Pyoverdin G4R, a Peptidic Siderophore Produced by a Nitrogen-Fixing Strain of Pseudomonas putida. Tetrahedron 53: 12539

    CAS  Google Scholar 

  360. Sansinenea E, Ortiz A (2009) Bacterial Siderophores Containing a Thiazoline Ring. Mini-Rev Org Chem 6: 120

    CAS  Google Scholar 

  361. Sattely ES, Walsh CT (2008) A Latent Oxazoline Electrophile for N-O-C Bond Formation in Pseudomonine Biosynthesis. J Am Chem Soc 130: 12282

    CAS  Google Scholar 

  362. Saxena B, Modi M, Modi VV (1986) Isolation and Characterization of Siderophores from Azospirillum lipoferum D-2. J Gen Microbiol 132: 2219

    CAS  Google Scholar 

  363. Sayer JM, Emery TF (1968) Structures of the Naturally Occurring Hydroxamic Acids, Fusarinines A and B. Biochemistry 7: 184

    CAS  Google Scholar 

  364. Schaffner EM, Hartmann R, Taraz K, Budzikiewicz H (1996) Structure Elucidation of Azotobactin 87, Isolated from Azotobacter vinelandii ATCC 12837. Z Naturforsch 51c: 139

    Google Scholar 

  365. Schalk IJ, Hennard C, Dugave C, Poole K, Abdallah MA, Pattus F (2001) Iron-free Pyoverdin Binds to its Outer Membrane Receptor FpvA in Pseudomonas aeruginosa: a New Mechanism for Membrane Iron Transport. Mol Microbiol 39: 351

    CAS  Google Scholar 

  366. Schalk IJ, Kyslik P, Prome D, van Dorsselaer A, Poole K, Abdallah MA, Pattus F (1999) Copurification of the FpvA Ferric Pyoverdin Receptor of Pseudomonas aeruginosa with its Iron-Free Ligand: Implications for Siderophore-Mediated Iron Transport. Biochemistry 38: 9357

    CAS  Google Scholar 

  367. Schlegel K, Fuchs R, Schäfer M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2001) The Pyoverdins of Pseudomonas sp. 96-312 and 96-318. Z Naturforsch 56c: 680

    Google Scholar 

  368. Schlegel K, Lex J, Taraz K, Budzikiewicz H (2006) The X-ray Structure of the Pyochelin Fe3+ Complex. Z Naturforsch 61c: 263

    Google Scholar 

  369. Schlegel K, Taraz K, Budzikiewicz H (2004) The Stereoisomers of Pyochelin, a Siderophore of Pseudomonas aeruginosa. BioMetals 17: 409

    CAS  Google Scholar 

  370. Schröder H, Adam J, Taraz K, Budzikiewicz H (1995) Dihydropyoverdinsulfonsäuren – Zwischenstufen bei der Biogenese? Z Naturforsch 50c: 616

    Google Scholar 

  371. Seinsche D, Taraz K, Budzikiewicz H, Gondol D (1993) Neue Pyoverdin-Siderophore aus Pseudomonas putida C. J Prakt Chem 335: 157

    CAS  Google Scholar 

  372. Shah S, Rao KK, Desai A (1993) Production of Catecholate Type of Siderophores by Azospirillum lipoferum M. Indian J Exp Biol 31: 41

    CAS  Google Scholar 

  373. 321. Shanzer A, Libman J (1983) Total Synthesis of Enterobactin via an Organotin Template. J Chem Soc Chem Commun 846

    Google Scholar 

  374. Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995) Isolation, Purification and Structures of Exochelin MS, the Extracellular Siderophore from Mycobacterium smegmatis. Biochem J 305: 187

    CAS  Google Scholar 

  375. Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995) Determination of the Structure of Exochelin MN, the Extracellular Siderophore from Mycobacterium neoaurum. Chem Biol 2: 553

    CAS  Google Scholar 

  376. Shiman R, Neilands JB (1965) Isolation, Characterization and Synthesis of Pyrimine, an Iron(II) Binding Agent from Pseudomonas GH. Biochemistry 4: 2233

    CAS  Google Scholar 

  377. Shirahata K, Deguchi T, Hayashi T, Matsubara I, Suzuki T (1970). The Structures of Fluopsins C and F. J Antibiotics 23: 546

    CAS  Google Scholar 

  378. Simpson FB, Neilands JB (1976) Siderochromes in Cyanophyceae: Isolation and Characterization of Schizokinen from Anabena sp. J Phycol 12: 44

    Google Scholar 

  379. Skorupska A, Choma A, Derylo M, Lorkiewicz Z (1988) Siderophore Containing 2,3-Dihydroxybenzoic Acid and Threonine Formed by Rhizobium trifolli (sic!). Acta Biochim Polon 35: 119

    CAS  Google Scholar 

  380. Smith MJ, Shoolery JN, Schwyn B, Holden I, Neilands JB (1985) Rhizobactin, a Structurally Novel Siderophore from Rhizobium meliloti. J Am Chem Soc 107: 1739

    CAS  Google Scholar 

  381. Snow GA (1965) The Structure of Mycobactin P, a Growth Factor for Mycobacterium johnei, and the Significance of its Iron Complex. Biochem J 94: 160

    CAS  Google Scholar 

  382. Snow GA (1965) Isolation and Structure of Mycobactin T, a Growth Factor from Mycobacterium tuberculosis. Biochem J 97: 166

    CAS  Google Scholar 

  383. Snow GA (1970) Mycobactins: Iron-chelating Growth Factors from Mycobacteria. Bacteriol Rev 34: 99

    CAS  Google Scholar 

  384. Snow GA, White AJ (1969) Chemical and Biological Properties of Mycobactins Isolated from Various Mycobacteria. Biochem J 115: 1031

    CAS  Google Scholar 

  385. Sokol PA, Lewis CJ, Dennis JJ (1992) Isolation of a Novel Siderophore from Pseudomonas cepacia. J Med Microbiol 36: 184

    CAS  Google Scholar 

  386. Spiro TG, Bates G, Saltman P (1989) The Hydrolytic Polymerization of Ferric Citrate. II. The Influence of Excess Citrate. J Am Chem Soc 89: 5559

    Google Scholar 

  387. Spiro TG, Pape L, Saltman P (1989) The Hydrolytic Polymerization of Ferric Citrate. I. The Chemistry of the Polymer. J Am Chem Soc 89: 5555

    Google Scholar 

  388. Steglich W, Steffan B, Stroech K, Wolf M (1984) Pistillarin, ein charakteristischer Inhaltsstoff der Herkuleskeule (Clavariadelphus pistillaris) und einiger Ramaria-Arten (Basidiomycetes). Z Naturforsch. 39c: 10

    CAS  Google Scholar 

  389. Stephan H, Freund S, Beck W, Jung G, Meyer JM, Winkelmann G (1993) Ornibactins – a New Family of Siderophores from Pseudomonas. BioMetals 6: 93

    CAS  Google Scholar 

  390. 336. Stephan H, Freund S, Meyer JM, Winkelmann G, Jung G (1993) Structure Elucidation of the Gallium-Ornibactin Complex by 2D-NMR Spectroscopy. Liebigs Ann Chem 43

    Google Scholar 

  391. Stintzi A, Barnes C, Xu J, Raymond KN (2000) Microbial Iron Transport via a Siderophore Shuttle: a Membrane Ion Transport Paradigm. Proc Natl Acad Sci USA 97: 10691

    CAS  Google Scholar 

  392. Stoll A, Renz J, Brack A (1951) Beiträge zur Konstitutionsaufklärung des Nocardamins. 10. Mitteilung über antibakterielle Stoffe. Helv Chim Acta 34: 862

    CAS  Google Scholar 

  393. Storey EP, Boghozian R, Little JL, Lowman DW, Charkraborty R (2006) Characterization of ‘Schizokinen’; a Dihydroxamate-type Siderophore Produced by Rhizobium leguminosarum IARI 917. BioMetals 19: 637

    CAS  Google Scholar 

  394. Stuart SJ, Prpic JK, Robins-Browne RM (1986) Production of Aerobactin by some Species of the Genus Yersinia. J Bacteriol 166: 1131

    CAS  Google Scholar 

  395. Suenaga K, Kokubo S, Shinohara C, Tsuji T, Uemura D (1999) Structures of Amamistatins A and B, Novel Growth Inhibitors of Human Tumor Cell Lines from an Actinomycete. Tetrahedron Lett 40: 1945

    CAS  Google Scholar 

  396. Sultana R, Fuchs R, Schmickler H, Schlegel K, Budzikiewicz H, Siddiqui BS, Geoffroy V, Meyer JM (2000) A Pyoverdin from Pseudomonas sp. CFML 95-275. Z Naturforsch 55c: 857

    Google Scholar 

  397. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2000) A Pyoverdine from Pseudomonas putida CFML 90-51 with a Lys ε-Amino Link in the Peptide Chain. BioMetals 13: 147

    CAS  Google Scholar 

  398. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2001) An Isopyoverdin from Pseudomonas putida CFML 90-44. Z Naturforsch 56c: 303

    Google Scholar 

  399. Sultana R, Siddiqui BS, Taraz K, Budzikiewicz H, Meyer JM (2001) An Isopyoverdin from Pseudomonas putida CFML 90-33. Tetrahedron 57: 1019

    CAS  Google Scholar 

  400. Tabata N, Tomoda H, Ōmura S (1999) Ferroverdins, Inhibitors of Cholesteryl Ester Transfer Protein Produced by Streptomyces sp. WK-5344. II. Structure Elucidation. J Antibiotics 52: 1108

    CAS  Google Scholar 

  401. Tait GH (1975) The Identification and Biosynthesis of Siderochromes Formed by Micrococcus denitrificans. Biochem J 146: 191

    CAS  Google Scholar 

  402. Takahashi A, Nakamura H, Kameyama T, Kurasawa S, Naganawa H, Okami Y, Takeuchi T, Umezawa H, Iitaka Y (1987) Bisucaberin, a New Siderophore, Sensitizing Tumor Cells to Macrophage-mediated Cytolysis. II. Physico-chemical Properties and Structure Determination. J Antibiotics 40: 1671

    CAS  Google Scholar 

  403. Tappe R (1991) Ferribactin 3b, ein Siderophor von Pseudomonas aptata 3b. Diplomarbeit, Universität zu Köln

    Google Scholar 

  404. Tappe R, Taraz K, Budzikiewicz H, Meyer JM, Lefèvre JF (1993) Structure Elucidation of a Pyoverdin Produced by Pseudomonas aeruginosa ATCC 27853. J Prakt Chem 335: 83

    CAS  Google Scholar 

  405. Taraz K, Ehlert G, Geisen K, Budzikiewicz H, Korth H, Pulverer G (1990) Protochelin, ein Catecholat-Siderophor aus einem Bakterium (DMS Nr. 5746). Z Naturforsch 45b: 1327

    Google Scholar 

  406. Taraz K, Seinsche D, Budzikiewicz H (1991) Pseudobactin- und Pseudobactin A-Varianten: Neue Peptidsiderophore vom Pyoverdin-Typ aus Pseudomonas fluorescens “E2”. Z Naturforsch 46c: 522

    Google Scholar 

  407. Teintze M, Hossain MB, Barnes CL, Leong J, van der Helm D (1981) Structure of Ferric Pseudobactin, a Siderophore from a Plant Growth Promoting Pseudomonas. Biochemistry 20: 6446

    CAS  Google Scholar 

  408. Teintze M, Leong J (1981) Structure of Pseudobactin A, a Second Siderophore from Plant Growth Promoting Pseudomonas B10. Biochemistry 20: 6457

    CAS  Google Scholar 

  409. Telford JR, Leary JA, Tunstad LMG, Byers BR, Raymond KN (1994) Amonabactin: Characterization of a Series of Siderophores from Aeromonas hydrophila. J Am Chem Soc 116: 4499

    CAS  Google Scholar 

  410. Telford JR, Raymond KN (1997) Amonabactin: a Family of Novel Siderophores from a Pathogenic Bacterium. J Biol Inorg Chem 2: 750

    CAS  Google Scholar 

  411. Telford JR, Raymond KN (1998) Coordination Chemistry of the Amonabactins, Bis(catecholate) Siderophores from Aeromonas hydrophila. Inorg Chem 37: 4578

    CAS  Google Scholar 

  412. Temirov YuV, Esikova TZ, Kashporov IA, Balashova TA, Vinokurov LM, Alakhov YuB (2003) A Catecholic Siderophore Produced by the Thermoresistant Bacillus licheniformis VK21 Strain. Russian J Bioorg Chem 29: 542 (translated from Bioorg Khim 29: 597)

    Google Scholar 

  413. Thieken A, Winkelmann G (1992) Rhizoferrin: a Complexon Type Siderophore of the Mucorales and Entomophthorales (Zygomycetes). FEMS Microbiol Lett 94: 37

    CAS  Google Scholar 

  414. Thomas MS (2007) Iron Acquisition Mechanisms of the Burkholderia cepacia Complex. Biometals 20: 431

    CAS  Google Scholar 

  415. Tindale AE, Mehrotra M, Ottem D, Page WJ (2000) Dual Regulation of Catecholate Siderophore Biosynthesis in Azotobacter vinelandii by Iron and Oxidative Stress. Microbiology 146: 1617

    CAS  Google Scholar 

  416. Tomada H, Tabata N, Shinose M, Takahashi Y, Woodruff HB, Ōmura S (1999) Ferroverdins, Inhibitors of Cholesteryl Ester Transfer Protein Produced by Streptomyces sp. WK-5344. I. Production, Isolation and Biological Properties. J Antibiotics 52: 1101

    Google Scholar 

  417. Torres L, Pérez-Ortín JE, Tordera V, Beltrán JP (1986) Isolation and Characterization of an Fe(III)-Chelating Compound Produced by Pseudomonas syringae. Appl Environ Microbiol 2: 157

    Google Scholar 

  418. Uría Fernández D, Fuchs R, Schäfer M, Budzikiewicz H, Meyer JM (2003) The Pyoverdin of Pseudomonas fluorescens G173, a Novel Structural Type Accompanied by Unexpected Natural Derivatives of the Corresponding Ferribactin. Z Naturforsch 58c: 1

    Google Scholar 

  419. Uría Fernández D, Fuchs R, Taraz K, Budzikiewicz H, Munsch P, Meyer JM (2001) The Structure of a Pyoverdine Produced by a Pseudomonas tolaasii-like Isolate. BioMetals 14: 81

    Google Scholar 

  420. Uría Fernández D, Geoffroy V; Schäfer M, Meyer JM, Budzikiewicz H (2003) Structure Revision of Several Pyoverdines Produced by Plant-Growth Promoting and Plant-Deleterious Pseudomonas Species. Monatsh Chem 134: 1421

    Google Scholar 

  421. van der Helm D, Jalal MAF, Hossain MB (1987) The Crystal Structures, Conformations, and Configurations of Siderophores. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron Transport in Microbes, Plants and Animals. VCH, Weinheim, p 135

    Google Scholar 

  422. van der Helm D, Poling M (1976) The Crystal Structure of Ferrioxamine E. J Am Chem Soc 98: 82

    Google Scholar 

  423. van de Woestyne M, Bruyneel B, Mergeay M, Verstraete W (1991) The Fe2+ Chelator Proferrorosamine A is Essential for the Siderophore-mediated Uptake of Iron by Pseudomonas roseus fluorescens. Appl Environ Microbiol 57: 949

    Google Scholar 

  424. Van Tiel-Menkveld GJ, Mentjox-Vervuurt JM, Oudega B, de Graaf FK (1982) Siderophore Production by Enterobacter cloacae and a Common Receptor Protein for the Uptake of Aerobactin and Cloacin DF13. J Bacteriol 150: 490

    Google Scholar 

  425. Vergne AF, Walz AJ, Miller MJ (2000) Iron Chelators from Mycobacteria (1954-1999) and Potential Therapeutic Applications. Nat Prod Rep 17: 99

    CAS  Google Scholar 

  426. Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal Regulation of Siderophore Synthesis in Pseudomonas aeruginosa and Functional Effects of Siderophore-Metal Complexes. Appl Environ Microbiol 58: 2886

    CAS  Google Scholar 

  427. Voss J, Taraz K, Budzikiewicz H (1999) A Pyoverdin from the Antarctica Strain 51W of Pseudomonas fluorescens. Z Naturforsch 54c: 156

    Google Scholar 

  428. Voßen W, Fuchs R, Taraz K, Budzikiewicz H (2000) Can the Peptide Chain of a Pyoverdin be Bound by an Ester Bond to the Chromophore? – The Old Problem of Pseudobactin 7SR1. Z Naturforsch 55c: 153

    Google Scholar 

  429. Voßen W, Taraz K (1999) Structure of the Pyoverdin PVD 2908 – a New Pyoverdin from Pseudomonas sp. 2908. BioMetals 12: 323

    Google Scholar 

  430. Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H (2009) Ferricrocin – a Siderophore Involved in Intra- and Transcellular Iron Distribution in Aspergillus fumigatus. Appl Envir Microbiol 75: 4194

    CAS  Google Scholar 

  431. Wang W, Chi Z, Liu G., Buzdar MA, Chi Z, Gu Q (2009) Chemical and Biological Characterization of Siderophores Produced by the Marine-derived Aureobasidium pullulans HN6.2 and its Antibacterial Activity. Biometals 22: 965

    CAS  Google Scholar 

  432. Wang QX, Phanstiel O iv (1998) Total Synthesis of Acinetoferrin. J Org Chem 63: 1491

    CAS  Google Scholar 

  433. Warner PJ, Williams PH, Bindereif A, Neilands JB (1981) CoIV Plasmid-Specific Aerobactin Synthesis by Invasive Strains of Escherichia coli. Infect Immunol 33: 540

    CAS  Google Scholar 

  434. Wasielewski E, Adkinson RA, Abdallah MA, Kieffer B (2002). The Three-Dimensional Structure of the Gallium Complex of Azoverdin, a Siderophore of Azomonas macrozytogenes ATCC 12334, Determined by NMR Using Residual Dipolar Coupling Constants. Biochemistry 41: 12488

    CAS  Google Scholar 

  435. Wawszkiewicz EJ, Schneider HA (1975) Control of Salmonellosis Pacifarin Biosynthesis by Iron. Infect Immunol 11: 69

    CAS  Google Scholar 

  436. Weber M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2000) The Structure of a Pyoverdine from Pseudomonas sp. CFML 96.188 and its Relation to other Pyoverdines with a Cyclic C-terminus. BioMetals 13: 301

    CAS  Google Scholar 

  437. Westervelt P, Bloom ML, Mabbott GA, Fekete FA (1985) The Isolation and Identification of 3,4-Dihydroxybenzoic Acid Formed by Nitrogen-fixing Azomonas macrocytogenes. FEMS Microbiol Lett 30: 331

    CAS  Google Scholar 

  438. White AJ, Snow GA (1969) Isolation of Mycobactins from Various Mycobacteria. The Properties of Mycobactins S and H. Biochem J 111: 785

    CAS  Google Scholar 

  439. Wilson MK, Abergel RJ, Raymon J, Arceneaux JE, Byers BR (2006) Siderophores from Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348: 320

    CAS  Google Scholar 

  440. Winkelmann G (1990) Structural and Stereochemical Aspects of Iron Transport in Fungi. Biotech Adv 8: 207

    CAS  Google Scholar 

  441. Winkelmann G (1991) Specificity of Iron Transport in Bacteria and Fungi. In: Winkelmann G (ed) CRC Handbook of Microbial Iron Chelates. CRC, Boca Raton, FL, p 65

    Google Scholar 

  442. Winkelmann G, Huschka HG (1989) Molecular Recognition and Transport of Siderophores in Fungi. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron Transport in Microbes, Plants and Animals. VCH, Weinheim, p 317

    Google Scholar 

  443. Winkler S, Ockels W, Budzikiewicz H, Korth H, Pulverer G (1986) 2-Hydroxy-4-methoxy-5-methylpyridin-N-oxid, ein Al3+-bindender Metabolit von Pseudomonas cepacia. Z Naturforsch 41c: 807

    Google Scholar 

  444. Wong-Lun-Sang S, Bernardini JJ, Hennard C, Kyslík P, Dell A, Abdallah MA (1996) Bacterial Siderophores: Structure Elucidation, 2D 1H and 13C NMR Assignments of Pyoverdins Produced by Pseudomonas fluorescens CHA0. Tetrahedron Lett 37: 3329

    CAS  Google Scholar 

  445. Wuest WM, Sattely ES, Walsh CT (2009) Three Siderophores from one Bacterial Enzymatic Assembly Line. J Am Chem Soc 131: 5056

    CAS  Google Scholar 

  446. Xu G, Martinez JS, Groves JT, Butler A (2002) Membrane Affinity of the Amphiphilic Marinobactin Siderophores. J Am Chem Soc 124:13408

    CAS  Google Scholar 

  447. Yamada Y, Seki N, Kitahara T, Takahashi M, Matsui M (1970) Structure and Synthesis of Aeruginoic Acid (2-o-hydroxyphenylthiazole-4-carboxylic acid). Agric Biol Chem 34: 780

    CAS  Google Scholar 

  448. Yamamoto S, Okujo N, Fujita Y, Saito M, Yoshida T, Shinoda S (1993) Structures of Two Polyamine-containing Catecholate Siderophores from Vibrio fluvialis. J Biochem 113: 538

    CAS  Google Scholar 

  449. Yamamoto S, Okujo N, Sakakibara Y (1994) Isolation and Structure Elucidation of Acinetobactin, a Novel Siderophore from Acinetobacter baumannii. Arch Mikrobiol 162: 249

    CAS  Google Scholar 

  450. Yamamoto S, Okujo N, Yoshida T, Matsuura S, Shinoda S (1994) Structure and Iron Transport Activity of Vibrioferrin, a New Siderophore of Vibrio parahaemolyticus. J Biochem 115: 868

    CAS  Google Scholar 

  451. Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHA0 Produces enantio-Pyochelin, the Optical Antipode of the Pseudomonas aeruginosa Siderophore Pyochelin. J Biol Chem 282: 35546

    CAS  Google Scholar 

  452. Zähner H, Keller-Schierlein W, Hütter R, Hess-Leisinger K, Deér A (1963) Stoffwechselprodukte von Mikroorganismen. 40. Mitteilung. Sideramine aus Aspergillaceen. Arch Mikrobiol 45: 119

    Google Scholar 

  453. Zalkin A, Forrester JD, Templeton DH (1966) Ferrichrome A Tetrahydrate. Determination of Crystal and Molecular Structure. J Am Chem Soc 88: 1810

    CAS  Google Scholar 

  454. Zamri A, Abdallah MA (2000) An Improved Stereocontrolled Synthesis of Pyochelin, Siderophore of Pseudomonas aeruginosa and Burkholderia cepacia. Tetrahedron 56: 249

    CAS  Google Scholar 

  455. Zawadzka AM, Vandecasteele FPJ, Crawford RL, Paszczynski AJ (2006) Identification of Siderophores from Pseudomonas stutzeri. Can J Microbiol 52: 1164

    CAS  Google Scholar 

  456. Abergel RJ, Zawadzka AM, Hoette TM, Raymond KM (2009) Enzymatic Hydrolysis of Trilactone Siderophores: Where Chiral Recognition Occurs in Enterobactin and Bacillibactin Iron Transport. J Am Chem Soc 131: 12682

    CAS  Google Scholar 

  457. Amin SA, Green DH, Küpper FC, Carrano CJ (2009) Vibrioferrin, an Unusual Marine Siderophore: Iron Binding, Photochemistry and Biological Implications. Inorg Chem 48: 11451

    CAS  Google Scholar 

  458. Barbeau K (2006) Photochemistry of Organic Iron (III) Complexing Ligands in Oceanic Systems. Photochem Photobiol 82: 1505

    CAS  Google Scholar 

  459. Bergeron RJ, McManis JS, Perumal PT, Algee SE (1991) The Total Synthesis of Alcaligin. J Org Chem 56: 5560

    CAS  Google Scholar 

  460. Crosa JH, Walsh CT (2002) Genetics and Assembly Line Enzymology of Siderophore Biosynthesis in Bacteria. Microbiol Mol Biol Rev 66: 223

    CAS  Google Scholar 

  461. Fadeev E, Luo M, Groves JT (2005) Synthesis and Structural Modeling of the Amphiphilic Siderophore Rhizobactin-1021 and its Analogs. Bioorg Med Chem Lett 15: 3771

    CAS  Google Scholar 

  462. Ghosh A, Miller MJ (1993) Synthesis of Novel Citrate-Based Siderophores and Siderophore-β-lactam Conjugates. Iron Transport-mediated Drug Delivery Systems. J Org Chem 58: 7652

    CAS  Google Scholar 

  463. Lemenceau P, Expert D, Gaymard F, Bakker PAHM, Briat JF (2009) Role of Iron in Plant-Microbe Interaction. Adv Bot Res 51: 491

    Google Scholar 

  464. Mukai A, Komaki H, Takagi M, Shin-ya K (2009) Novel Siderophore, JBIR-16, Isolated from Nocardia tenerifensis 101015. J Antibiot 62: 601

    CAS  Google Scholar 

  465. Peuckert F, Miethke M, Albrecht AG, Essen LO, Marahiel MA (2009) Structural Basis and Stereochemistry of Tricatecholate Siderophore Binding by FeuA. Angew Chemie Int Ed 48: 7924

    CAS  Google Scholar 

  466. Ravel J, Cornelis P (2003) Genomics of Pyoverdin-mediated Iron Uptake in Pseudomonads. Trends Microbiol 11: 195

    CAS  Google Scholar 

  467. Sandy M, Butler A (2009) Microbial Iron Acquisition: Marine and Terrestrial Siderophores. Chem Rev 109: 4580

    CAS  Google Scholar 

  468. Takeuchi Y, Nagao Y, Toma K, Yoshikawa Y, Akiyama T, Nishioka H, Abe H, Harayama T, Yamamoto S (1999) Synthesis and Siderophore Activity of Vibrioferrin and One of its Diastereomeric Isomers. Chem Pharm Bull 47: 1284

    CAS  Google Scholar 

  469. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a New Peptide Natural Product by Streptomyces coelicolor Genome Mining. Nature Chem Biol 1: 65

    Google Scholar 

  470. Robbel L, Knappe TA, Linne U, Xie X, Marahiel MA (2009) Erythrochelin - a Hydroxamate-type Siderophore Predicted from the Genome of Saccharopolyspora erythraea. FEBS J published online DOI 10.1111/j.1742-4658.2009.07512.x

    Google Scholar 

Download references

Acknowledgement

Many thanks are due to Dr. J. Neudörfl for preparing the Plates with siderophore X-ray structures. Data bases for the X-ray structures: Plate 1: FEPSBC 10; 3: TEQKQV; 4: YELJOP; 5: VENPAC; 6: CUHGUH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Budzikiewicz .

Editor information

Editors and Affiliations

Appendices

Appendix

Table 7. Pyoverdins Isolated from Pseudomonas spp.

Notes Added in Proof

2.1 Section 2.5

Coelichelin from Streptomyces coelicolor comprises D-N 5-formyl-N 5-hydroxy-Orn-D-aThr bound to N 5 of L-N 5-hydroxy-Orn whose N2 is acylated by D-N 5-formyl-N 5-hydroxy-Orn (412).

2.2 Section 2.6

Erythrochelin from Saccharopolyspora erythraea is a coprogen-type siderophore (Table 2) with Ac1 = i and Ac2 = D-Ser-D-N 2, N 5-diacetyl-N 5-hydroxy-Orn (413).

2.3 Section 2.7

The transport system of Bacillus subtilis accommodates the Fe3+ complexes of enterobactin (Δ-configured), enantio-D-enterobactin and of corynebactin (bacillibactin) (both Λ). Since only Λ complexes can be bound to the receptor a configurational change from Δ to Λ is induced. Only the natural ferri-L-siderophores can be degraded enzymatically (399, 408).

From Nocardia tenerifensis the heterobactin JBIR-16 was obtained (30, R = DHB). The stereochemistry of the two Orn residues was not established. By mass spectrometry a 1:1 Fe3+/Lig ratio was determined for the red complex (407).

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Budzikiewicz, H. (2010). Microbial Siderophores. In: Kinghorn, A., Falk, H., Kobayashi, J. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Vol. 92. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 92. Springer, Vienna. https://doi.org/10.1007/978-3-211-99661-4_1

Download citation

Publish with us

Policies and ethics