Skip to main content

Ideal Interpolation: Translations to and from Algebraic Geometry

  • Chapter
  • First Online:

Part of the book series: Texts and Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

In this survey I will discuss four themes that surfaced in multivariate interpolation and seem to have analogues in algebraic geometry. The hope is that mixing these two areas together will benefit both.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Auzinger and H. Stetter. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. In Numerical mathematics, Singapore 1988, volume 86 of Internat. Schriftenreihe Numer. Math., pages 12–30. Birkhäuser, Basel, 1988.

    Google Scholar 

  2. G. Birkhoff. The algebra of multivariate interpolation. In C. V. Coffman and G. J. Fix, editors, Constructive approaches to mathematical models, pages 345–363. Academic Press, New York, 1979.

    Google Scholar 

  3. S. Boltianski, S. Ryskov, and Yu. Saskin. On k-regular embeddings and their applications to the theory of approximation of functions. Uspehi Mat. Nauk, 15(6):125–132, 1960. English translation. Amer. Math. Soc. Transl. 28(2), 1963, 211–219.

    MathSciNet  Google Scholar 

  4. K. Borsuk. On the k-independent subsets of the Euclidean space and of the Hilbert space. Bull. Acad. Polon. Sci., III(5):351–356, 1957.

    MathSciNet  Google Scholar 

  5. Dustin A. Cartwright, Daniel Erman, Mauricio Velasco, and Bianca Viray. Hilbert schemes of 8 points in \(\mathbb{A}^{d}\). arXiv:0803.0341.

    Google Scholar 

  6. F. R. Cohen and D. Handel. k-regular embeddings of the plane. Proc. Amer. Math. Soc., 72(1):201–204, 1978.

    Google Scholar 

  7. D. Cox. Solving equations via algebras. In A. Dickenstein and I. Z. Emiris, editors, Solving Polynomial Equations, Foundations, Algorithms, and Applications, volume 14 of Algorithms and Computation in Mathematics, pages 63–123. Springer, Berlin, 2005.

    Chapter  Google Scholar 

  8. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer-Verlag, New York, NY, second edition, 1997. An introduction to computational algebraic geometry and commutative algebra.

    Google Scholar 

  9. C. de Boor. On the error in multivariate polynomial interpolation. Appl. Numer. Math., 10:297–305, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. de Boor. The error in polynomial tensor-product, and Chung–Yao interpolation. In A. LeMéhauté, C. Rabut, and L. Schumaker, editors, Surface Fitting and Multiresolution Methods (Chamonix–Mont-Blanc, 1996), pages 35–50. Vanderbilt University Press, Nashville, TN, 1997.

    Google Scholar 

  11. C. de Boor. Ideal interpolation. In C. K. Chui, M. Neamtu, and L. Schumaker, editors, Approximation Theory XI: Gatlinburg 2004, pages 59–91. Nashboro Press, Brentwood, TN, 2005.

    Google Scholar 

  12. C. de Boor. What are the limits of Lagrange projectors? In B. Bojanov, editor, Constructive Theory of Functions (Varna 2005), pages 51–63. Marin Drinov Academic Publishing House, Sofia, Bulgaria, 2006.

    Google Scholar 

  13. C. de Boor. Interpolation from spaces spanned by monomials. Adv. Comput. Math., 26(1–3):63–70, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. de Boor and A. Ron. On polynomial ideals of finite codimension with applications to box spline theory. J. Math. Anal. Appl., 158:168–193, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. de Boor and B. Shekhtman. On the pointwise limits of bivariate Lagrange projectors. Linear Algebra Appl., 429:311–325, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Fogarty. Algebraic families on an algebraic surface. Amer. J. Math., 90:511–521, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Gasca and T. Sauer. On the history of multivariate polynomial interpolation. J. Comput. Appl. Math., 122(1–2):23–35, 2000. Numerical Analysis 2000, Vol. II: Interpolation and Extrapolation.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Gordan. Les invariants des formes binaires. J. Math. Pures et Appl. (Liouville’s J.), 6:141–156, 1900.

    Google Scholar 

  19. R. Guralnick. A note on commuting pairs of matrices. Linear Multilinear Algebra, 31(1–4):71–75, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Guralnick and B. Sethurman. Commuting pairs and triplets of matrices and related varieties. Linear Algebra Appl., 310:139–148, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Hayman. Commutative algebra of n points on the plane. In L. Avramov, M. Green, C. Haneke, K. Smith, and B. Sturmfels, editors, Lectures in Contemporary Commutative Algebra, Mathematical Science Research Institute Publications, pages 153–180. Cambridge University Press, Cambridge, UK, 2004.

    Google Scholar 

  22. A. Iarrobino. Reducibility of the families of 0-dimensional schemes on a variety. Invent. Math., 15:72–77, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Iarrobino and J. Emsalem. Some zero-dimensional generic singularities; finite algebras having small tangent space. Compositio Math., 36(2):145–188, 1978.

    MATH  MathSciNet  Google Scholar 

  24. A. Kehrein, M. Kreuser, and L. Robbiano. An algebraist’s view on border basis. In A. Dickenstein and I. Z. Emiris, editors, Solving Polynomial Equations, Foundations, Algorithms, and Applications, volume 14 of Algorithms and Computation in Mathematics, pages 169–202. Springer, 2005.

    Google Scholar 

  25. Kyungyong Lee. On the symmetric subscheme of Hilbert scheme of points. arXiv:0708.3390v2.

    Google Scholar 

  26. F. S. Macaulay. The algebraic theory of modular systems. Cambridge University Press, Cambridge, UK, 1916. Reprinted 1994.

    MATH  Google Scholar 

  27. J. C. Mairhuber. On Haar’s theorem concerning Chebychev approximation problems having unique solutions. Proc. Amer. Math. Soc., 7:609–615, 1956.

    Google Scholar 

  28. J. T. Marty. Introduction to the Theory of Bases. Springer-Verlag, 1969.

    Google Scholar 

  29. E. Miller and B. Sturmfels. Combinatorial Commutative Algebra, volume 227 of Graduate Texts in Mathematics. Springer-Verlag, New York, NY, 2000.

    Google Scholar 

  30. H. M. Möller. Hermite interpolation in several variables using ideal-theoretic methods. In W. Schempp and K. Zeller, editors, Constructive Theory of Functions of Several Variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976), volume 571 of Lecture Notes in Mathematics, pages 155–163. Springer, Berlin, 1977.

    Google Scholar 

  31. T. S. Motzkin and O. Taussky. Pairs of matrices with property L. II. Trans. Amer. Math. Soc., 80(2):387–401, 1955.

    MATH  MathSciNet  Google Scholar 

  32. D. Mumford. The Red Book of Varieties and Schemes, volume 1358 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  33. H. Nakajima. Lectures on Hilbert schemes of points on surfaces, volume 18 of Amer. Math. Soc. Univ. Lect. Ser. American Mathematical Society, Providence, RI, 1999.

    MATH  Google Scholar 

  34. K. C. O’Meara and C. Vinsonhaler. On approximately simultaneously diagonalizable matrices. Linear Algebra Appl., 412(1):39–74, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  35. L. Robbiano. Zero-dimensional ideals or the inestimable value of estimable terms. In B. Hanzon and M. Hazewinkel, editors, Constructive Algebra and Systems Theory, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., pages 95–114. Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands, 2006.

    Google Scholar 

  36. T. Sauer. Polynomial interpolation in several variables: Lattices, differences, and ideals. In M. Buhmann, W. Hausmann, K. Jetter, W. Schaback, and J. Stöckler, editors, Multivariate Approximation and Interpolation, volume 12 of Studies in Computational Mathematics, pages 189–228. Elsevier B. V., Amsterdam, 2006.

    Google Scholar 

  37. T. Sauer and Yuan Xu. On multivariate Hermite interpolation. Adv. Comput. Math., 4:207–259, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  38. T. Sauer and Yuan Xu. On multivariate Lagrange interpolation. Math. Comp., 64(211):1147–1170, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  39. B. Shekhtman. Interpolation by polynomials in several variables. In Approximation Theory, X (St. Louis, MO, 2001), Innov. Appl. Math., pages 367–372. Vanderbilt Univ. Press, Nashville, TN, 2002.

    Google Scholar 

  40. B. Shekhtman. Ideal projections onto planes. In Approximation Theory XI: Gatlinburg 2004, Mod. Methods Math., pages 395–404. Nashboro Press, Brentwood, TN, 2005.

    Google Scholar 

  41. B. Shekhtman. On a conjecture of Carl de Boor regarding the limits of Lagrange interpolants. Constr. Approx., 24(3):365–370, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  42. B. Shekhtman. On one question of Ed Saff. Elec. Trans. Numer. Anal., 25:439–445, 2006.

    MATH  MathSciNet  Google Scholar 

  43. B. Shekhtman. On the naïve error formula for bivariate linear interpolation. In Wavelets and Splines: Athens 2005, Mod. Methods Math., pages 416–427. Nashboro Press, Brentwood, TN, 2006.

    Google Scholar 

  44. B. Shekhtman. On perturbations of ideal complements. In B. Randrianantonina and N. Randrianantonina, editors, Banach Spaces and their Applications in Analysis, pages 413–422. Walter de Gruyter, Berlin, 2007.

    Google Scholar 

  45. B. Shekhtman. Uniqueness of Tchebysheff spaces and their ideal relatives. In Frontiers in Interpolation and Approximation, volume 282 of Pure Appl. Math. (Boca Raton), pages 407–425. Chapman & Hall/CRC, Boca Raton, FL, 2007.

    Google Scholar 

  46. B. Shekhtman. Bivariate ideal projectors and their perturbations. Adv. Comput. Math., 29(3):207–228, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  47. B. Shekhtman. On error formulas for multivariate polynomial interpolation. In M. Neamtu and L. Schumaker, editors, Approximation Theory XII: San Antonio 2007, pages 386–397. Nashboro Press, Brentwood, TN, 2008.

    Google Scholar 

  48. B. Shekhtman. On a conjecture of Tomas Sauer regarding nested ideal interpolation. Proc. Amer. Math. Soc., 137:1723–1728, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  49. B. Shekhtman. On the limits of Lagrange projectors. Constructive Approximation, 39:293–301, 2009.

    Article  MathSciNet  Google Scholar 

  50. H. J. Stetter. Matrix eigenproblems at the heart of polynomial system solving. SIGSAM Bull., 30(4):22–25, 1995.

    Article  Google Scholar 

  51. H. J. Stetter. Numerical Polynomial Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2004.

    MATH  Google Scholar 

  52. B. Sturmfels. Four counterexamples in combinatorial algebraic geometry. J. Algebra, 230(1):282–294, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  53. S. Waldron. The error in linear interpolation at the vertices of a simplex. SIAM J. Numer. Anal., 35(3):1191–1200 (electronic), 1998.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgment

When you don’t know where you’re going, every road will take you there.

(Common sense)

First and foremost, I want to thank Carl de Boor who introduced me to the subject; patiently and tirelessly coached me in the way of thinking, talking and writing about ideal projectors and provided much needed encouragement in the last four years. I also want to thank a number of algebraic geometers who served as anonymous referees for my papers. Their friendly advice and criticisms added a lot to my understanding of the relationship between AG and AT. If this paper does not reflect this understanding, the fault is not theirs but entirely my own. I am grateful to Gregory McColm and Tom McKinley for reading the manuscript and correcting my English. Finally, I want to thank John Abbott, Anna Bigatti, Martin Kreuser and Lorenzo Robbiano who took a chance at allowing me to tango with the audience at this ApCoA conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Shekhtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Vienna

About this chapter

Cite this chapter

Shekhtman, B. (2009). Ideal Interpolation: Translations to and from Algebraic Geometry. In: Robbiano, L., Abbott, J. (eds) Approximate Commutative Algebra. Texts and Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-211-99314-9_6

Download citation

Publish with us

Policies and ethics