Skip to main content

ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice

  • Conference paper
Book cover Acta Neurochirurgica Supplements

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 102))

Background ICM+ software encapsulates 20 years of our experience in brain monitoring gained in multiple neuro-surgical and intensive care centres. It collects data from a variety of bedside monitors and produces on-line time trends of parameters defined using configurable signal processing formulas. The resulting data can be displayed in a variety of ways including time trends, histograms, cross histograms, correlations, etc. For technically minded researchers there is a plug-in mechanism facilitating registration of third party libraries of functions and analysis tools.

Methods The latest version of the ICM+ software has been used in 162 severely head injured patients in the Neuro-sciences Critical Care Unit of the Addenbrooke's Cambridge University Hospital. Intracranial pressure (ICP) and invasive arterial blood pressure (ABP) were monitored routinely. Mean values of ICP, ABP, cerebral perfusion pressure (CPP) and various indices describing pressure reactivity (PRx), pressure—volume compensation (RAP) and vascular waveforms of ICP were calculated. Error-bar chart showing reactivity index PRx versus CPP (‘Optimal CPP’ chart) was calculated continuously.

Findings PRx showed a significant relationship with CPP (ANOVA: p<0.021) indicating loss of cerebral pressure-reactivity for low CPP (CPP < 55 mmHg) and for high CPPs (CPP>95 mmHg). Examining PRx—CPP curves in individual patients revealed that CPPopt not only varied between subjects but tended to fluctuate as the patient's state changed during the stay in the ICU. Calculation window of 6–8 h provided enough data to capture the CPPopt curve.

Conclusions ICM+ software proved to be useful both academically and clinically. The complexity of data analysis is hidden inside loadable profiles thus allowing clinically minded investigators to take full advantage of signal processing engine in their research into cerebral blood and fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH (2007) Continuous time— domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38:2818–2825

    Article  PubMed  Google Scholar 

  2. Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD (2001) Cerebral autoregulation following head injury. J Neurosurg 95:756–763

    Article  PubMed  CAS  Google Scholar 

  3. Czosnyka M, Whitehouse H, Smielewski P, Kirkpatrick P, Pickard JD (1994) Computer supported multimodal monitoring in neuro intensive care. Int J Clin Monit Comput 11:223–232

    Article  PubMed  CAS  Google Scholar 

  4. Czosnyka Z, Czosnyka M, Owler B, Momjian S, Kasprowicz M, Schmidt EA, Smielewski P, Pickard JD (2005) Clinical testing of CSF circulation in hydrocephalus. Acta Neurochir Suppl 95:247– 251

    Article  PubMed  CAS  Google Scholar 

  5. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J (2006) Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 34:1783–1788

    Article  PubMed  Google Scholar 

  6. Lavinio A, Timofeev I, Nortje J, Outtrim J, Smielewski P, Gupta A, Hutchinson PJ, Matta BF, Pickard JD, Menon D, Czosnyka M (2007) Cerebrovascular reactivity during hypothermia and rewarming. Br J Anaesth 99:237–244

    Article  PubMed  CAS  Google Scholar 

  7. Smielewski P, Czosnyka M, Steiner L, Belestri M, Piechnik S, Pickard JD (2005) ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir Suppl 95:43–49

    Article  PubMed  CAS  Google Scholar 

  8. Smielewski P, Czosnyka M, Zabolotny W, Kirkpatrick P, Richards HK, Pickard JD (1997) A computing system for the clinical and experimental investigation of cerebrovascular reactivity. Int J Clin Monit Comput 14:185–198

    Article  PubMed  CAS  Google Scholar 

  9. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30:733–738

    Article  PubMed  Google Scholar 

  10. Tseng MY, Al-Rawi PG, Czosnyka M, Hutchinson PJ, Richards H, Pickard JD, Kirkpatrick PJ (2007) Enhancement of cerebral blood flow using systemic hypertonic saline therapy improves outcome in patients with poor-grade spontaneous subarachnoid hemorrhage. J Neurosurg 107:274–282

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -J. Steiger

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Smielewski, P. et al. (2008). ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice. In: Steiger, H.J. (eds) Acta Neurochirurgica Supplements. Acta Neurochirurgica Supplementum, vol 102. Springer, Vienna. https://doi.org/10.1007/978-3-211-85578-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-85578-2_30

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-85577-5

  • Online ISBN: 978-3-211-85578-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics