Skip to main content

New Approaches to Cardioplegia: Alternatives to Hyperkalemia

  • Chapter
  • First Online:
New Solutions for the Heart

Abstract

The current gold standard for cardioplegic arrest during cardiac surgery is to use a hyperkalemic (elevated potassium) solution (either crystalloid or blood-based). Hyperkalemia induces arrest by shifting the resting membrane potential towards a positive value (i.e. a depolarization) and is, therefore, classified as depolarized arrest. Despite its almost universal usage, depolarized arrest has a number of disadvantages that make hyperkalemia, potentially, a less than optimal means of inducing arrest. Thus, alternative arresting methods and agents, which may be beneficial, have been explored. This chapter describes the disadvantages of depolarized arrest and highlights the alternative agents that could possibly be used in a clinical setting to induce alternative means of arrest, discussing their potential advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseev AE, Jovanovic A, Lopez JR, Terzic A (1996). Adenosine slows the rate of K(+)-induced membrane depolarization in ventricular cardiomyocytes: possible implication in hyperkalemic cardioplegia. J Mol Cell Cardiol 28(6): 1193–1202.

    Article  PubMed  CAS  Google Scholar 

  • Amrani M, Ledingham S, Jayakumar J, Allen NJ, Rothery S, Severs N, Yacoub M (1992) Detrimental effects of temperature on the efficacy of the University of Wisconsin solution when used for cardioplegia at moderate hypothermia. Comparison with the St. Thomas Hospital solution at 4 degrees C and 20 degrees C. Circulation 86(5 Suppl): II280–11288.

    PubMed  CAS  Google Scholar 

  • Arlock P, Wohlfart B, Sjoberg T, Steen S (2005). The negative inotropic effect of esmolol on isolated cardiac muscle. Scand Cardiovasc J 39(4): 250–254.

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C (1979). The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 379(2): 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Balderman SC, Schwartz K, Aldrich J, Chan AK (1992). Cardioplegic arrest of the myocardium with calcium blocking agents. J Cardiovasc Pharmacol 19(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli L, Giles WR, West A (1988). Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart. J Physiol 405: 615–633.

    PubMed  CAS  Google Scholar 

  • Bers DM (2002). Cardiac excitation-contraction coupling. Nature 415(6868): 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Bessho R, Chambers DJ (2001). Myocardial protection: the efficacy of an ultra-short-acting beta-blocker, esmolol, as a cardioplegic agent. J Thorac Cardiovasc Surg 122(5): 993–1003.

    Article  PubMed  CAS  Google Scholar 

  • Bessho R, Chambers DJ (2002). Myocardial protection with oxygenated esmolol cardioplegia during prolonged normothermic ischemia in the rat. J Thorac Cardiovasc Surg 124(2): 340–351.

    Article  PubMed  CAS  Google Scholar 

  • Boehm DH, Human PA, von Oppell U, Owen P, Reichenspurner H, Opie LH, Rose AG, Reichart B (1991). Adenosine cardioplegia: reducing reperfusion injury of the ischaemic myocardium? Eur J Cardiothorac Surg 5(10): 542–545.

    Article  PubMed  CAS  Google Scholar 

  • Boldt J, Brosch C, Lehmann A, Suttner S, Isgro F (2004). The prophylactic use of the beta-blocker esmolol in combination with phosphodiesterase III inhibitor enoximone in elderly cardiac surgery patients. Anesth Analg 99(4): 1009–1017.

    Article  PubMed  CAS  Google Scholar 

  • Booth JV, Spahn DR, McRae RL, Chesnut LC, El-Moalem H, Atwell DM, Leone BJ, Schwinn DA (2002). Esmolol improves left ventricular function via enhanced beta-adrenergic receptor signaling in a canine model of coronary revascularization. Anesthesiology 97(1): 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Breisblatt WM, Stein KL, Wolfe CJ, Follansbee WP, Capozzi J, Armitage JM, Hardesty RL (1990). Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass surgery. J Am Coll Cardiol 15(6): 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • Bretschneider HJ, Hubner G, Knoll D, Lohr B, Nordbeck H, Spieckermann PG (1975). Myocardial resistance and tolerance to ischemia: physiological and biochemical basis. J Cardiovasc Surg (Torino) 16(3): 241–260.

    CAS  Google Scholar 

  • Brown DL, Ransom DM, Hall JA, Leicht CH, Schroeder DR, Offord KP (1995). Regional anesthesia and local anesthetic-induced systemic toxicity: seizure frequency and accompanying cardiovascular changes. Anesth Analg 81(2): 321–328.

    PubMed  CAS  Google Scholar 

  • Brown PS, Jr., Holland FW, Parenteau GL, Clark RE (1991). Magnesium ion is beneficial in hypothermic crystalloid cardioplegia. Ann Thorac Surg 51(3): 359–366; discussion 367.

    Article  PubMed  Google Scholar 

  • Buckberg GD, Brazier JR, Nelson RL, Goldstein SM, McConnell DH, Cooper N (1977). Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating, and arrested heart. J Thorac Cardiovasc Surg 73(1): 87–94.

    PubMed  CAS  Google Scholar 

  • Chakraborti S, Chakraborti T, Mandal M, Mandal A, Das S, Ghosh S (2002). Protective role of magnesium in cardiovascular diseases: a review. Mol Cell Biochem 238(1–2): 163–179.

    Article  PubMed  CAS  Google Scholar 

  • Chapman RA, Tunstall J (1987). The calcium paradox of the heart. Prog Biophys Mol Biol 50(2): 67–96.

    Article  PubMed  CAS  Google Scholar 

  • Chambers DJ, Fallouh HB (2010). Cardioplegia and cardiac surgery: Pharmacological arrest and cardiac protection during global ischemia and reperfusion. Pharmacol Therap 127(1): 41–52.

    Google Scholar 

  • Christakis GT, Fremes SE, Weisel RD, Tittley JG, Mickle DA, Ivanov J, Madonik MM, Benak AM, McLaughlin PR, Baird RJ (1986). Diltiazem cardioplegia. A balance of risk and benefit. J Thorac Cardiovasc Surg 91(5): 647–661.

    PubMed  CAS  Google Scholar 

  • Cohen G, Feder-Elituv R, Iazetta J, Bunting P, Mallidi H, Bozinovski J, Deemar C, Christakis GT, Cohen EA, Wong BI, McLean RD, Myers M, Morgan CD, Mazer CD, Smith TS, Goldman BS, Naylor CD, Fremes SE (1998). Phase 2 studies of adenosine cardioplegia. Circulation 98(19 Suppl): II225–233.

    PubMed  CAS  Google Scholar 

  • Corvera JS, Kin H, Dobson GP, Kerendi F, Halkos ME, Katzmark S, Payne CS, Zhao ZQ, Guyton RA, Vinten-Johansen J (2005). Polarized arrest with warm or cold adenosine/lidocaine blood cardioplegia is equivalent to hypothermic potassium blood cardioplegia. J Thorac Cardiovasc Surg 129(3): 599–606.

    Article  PubMed  Google Scholar 

  • de Jong JW (1986). Cardioplegia and calcium antagonists: a review. Ann Thorac Surg 42(5): 593–598.

    Article  PubMed  Google Scholar 

  • de Jong JW, van der Meer P, van Loon H, Owen P, Opie LH (1990). Adenosine as adjunct to potassium cardioplegia: effect on function, energy metabolism, and electrophysiology. J Thorac Cardiovasc Surg 100(3): 445–454.

    PubMed  Google Scholar 

  • Deng CY, Lin SG, Zhang WC, Kuang SJ, Qian WM, Wu SL, Shan ZX, Yang M, Yu XY (2006). Esmolol inhibits Na+ current in rat ventricular myocytes. Methods Find Exp Clin Pharmacol 28(10): 697–702.

    Article  PubMed  CAS  Google Scholar 

  • Dillon JS, Nayler WG (1987). [3H]-verapamil binding to rat cardiac sarcolemmal membrane fragments; an effect of ischaemia. Br J Pharmacol 90(1): 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Dobson GP, Jones MW (2004). Adenosine and lidocaine: a new concept in nondepolarizing surgical myocardial arrest, protection, and preservation. J Thorac Cardiovasc Surg 127(3): 794–805.

    Article  PubMed  CAS  Google Scholar 

  • Dorman BH, Hebbar L, Clair MJ, Hinton RB, Roy RC, Spinale FG (1997). Potassium channel opener-augmented cardioplegia: protection of myocyte contractility with chronic left ventricular dysfunction. Circulation 96(9 Suppl): II253–11259.

    Google Scholar 

  • Dorman BH, Hebbar L, Zellner JL, New RB, Houck WV, Acsell J, Nettles C, Hendrick JW, Sampson AP, Mukherjee R, Spinale FG (1998). ATP-sensitive potassium channel activation before cardioplegia. Effects on ventricular and myocyte function. Circulation 98(19): II176–11183.

    PubMed  CAS  Google Scholar 

  • Ducko CT, Stephenson ER, Jr., Jayawant AM, Vigilance DW, Damiano RJ, Jr. (2000). Potassium channel openers: are they effective as pretreatment or additives to cardioplegia? Ann Thorac Surg 69(5): 1363–1368.

    Article  PubMed  CAS  Google Scholar 

  • Ede M, Ye J, Gregorash L, Summers R, Pargaonkar S, LeHouerou D, Lessana A, Salerno TA, Deslauriers R (1997). Beyond hyperkalemia: beta-blocker-induced cardiac arrest for normothermic cardiac operations. Ann Thorac Surg 63(3): 721–727.

    Article  PubMed  CAS  Google Scholar 

  • Fallouh HB, Chambers DJ (2007). ICVTS on-line discussion A. The safety of using millimolar doses of lidocaine as cardioplegia. Interact Cardiovasc Thorac Surg 6(2): 176.

    Article  PubMed  Google Scholar 

  • Fallouh HB, McLatchie LM, Shattock MJ, Chambers DJ, Kentish JC (2007). Esmolol as a cardioplegic agent: an effect beyond (beta)-blockade. Circulation 116: II323–II324.

    Google Scholar 

  • Fallouh HB, McLatchie LM, Bardswell SC, Shattock MJ, Chambers DJ, Kentish JC (2008). Myocardial arrest by esmolol: negative inotropy induced by calcium and sodium channel blockade. J Mol Cell Cardiol 44: S49–S50.

    Google Scholar 

  • Fleckenstein A, Fleckenstein-Grün G (1988) Mechanism of action of calcium antagonists in heart and vascular smooth muscle. Eur Heart J 9(Suppl H): 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Fremes SE, Levy SL, Christakis GT, Walker SE, Iazetta J, Mallidi HR, Feder-Elituv R, Deemar KA, Cohen EA, Wong BI, Goldman BS (1996) Phase 1 human trial of adenosine-potassium cardioplegia. Circulation 94(9 Suppl II): 370–375.

    Google Scholar 

  • Fremes SE, Zhang J, Furukawa RD, Mickle DA, Weisel RD (1995). Cardiac storage with University of Wisconsin solution, calcium, and magnesium. J Heart Lung Transplant 14(5): 916–925.

    PubMed  CAS  Google Scholar 

  • Galinanes M, Shattock MJ, Hearse DJ (1992). Effects of potassium channel modulation during global ischaemia in isolated rat heart with and without cardioplegia. Cardiovasc Res 26(11): 1063–1068.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dorado D, Theroux P, Duran JM, Solares J, Alonso J, Sanz E, Munoz R, Elizaga J, Botas J, Fernandez-Aviles F, Soriano J, Esteban E (1992). Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85(3): 1160–1174.

    Article  PubMed  CAS  Google Scholar 

  • Geissler HJ, Davis KL, Laine GA, Ostrin EJ, Mehlhorn U, Hekmat K, Warters RD, Allen SJ (2000). Myocardial protection with high-dose beta-blockade in acute myocardial ischemia. Eur J Cardiothorac Surg 17(1): 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Gwathmey JK, Hajjar RJ, Solaro RJ (1991). Contractile deactivation and uncoupling of crossbridges. Effects of 2,3-butanedione monoxime on mammalian myocardium. Circ Res 69(5): 1280–1292.

    Article  PubMed  CAS  Google Scholar 

  • He GW, Yang CQ (1997). Superiority of hyperpolarizing to depolarizing cardioplegia in protection of coronary endothelial function. J Thorac Cardiovasc Surg 114(4): 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Hearse DJ, Braimbridge MV, Jynge P (1981). Protection of the ischemic myocardium: cardioplegia. New York, Raven Press.

    Google Scholar 

  • Hearse DJ, O'Brien K, Braimbridge MV (1981). Protection of the myocardium during ischemic arrest. Dose-response curves for procaine and lignocaine in cardioplegic solutions. J Thorac Cardiovasc Surg 81(6): 873–879.

    PubMed  CAS  Google Scholar 

  • Hearse DJ, Stewart DA, Braimbridge MV (1978). Myocardial protection during ischemic cardiac arrest. The importance of magnesium in cardioplegic infusates. J Thorac Cardiovasc Surg 75(6): 877–885.

    PubMed  CAS  Google Scholar 

  • Hebbar L, Houck WV, Zellner JL, Dorman BH, Spinale FG (1998). Temporal relation of ATP-sensitive potassium-channel activation and contractility before cardioplegia. Ann Thorac Surg 65(4): 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka M (2006). Metabolic pathways for ion homeostasis and persistent Na(+) current. J Cardiovasc Electrophysiol 17 Suppl 1: S124–S126.

    Article  PubMed  Google Scholar 

  • Hohnloser SH, Meinertz T, Klingenheben T, Sydow B, Just H (1991). Usefulness of esmolol in unstable angina pectoris. European Esmolol Study Group. Am J Cardiol 67(16): 1319–1323.

    Article  PubMed  CAS  Google Scholar 

  • Hosoda H, Sunamori M, Suzuki A (1994). Effect of pinacidil on rat hearts undergoing hypothermic cardioplegia. Ann Thorac Surg 58(6): 1631–1636.

    Article  PubMed  CAS  Google Scholar 

  • Iseri LT, French JH (1984). Magnesium: nature’s physiologic calcium blocker. Am Heart J 108(1): 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Jahangir A, Terzic A (2005). K(ATP) channel therapeutics at the bedside. J Mol Cell Cardiol 39(1): 99–112.

    Article  PubMed  CAS  Google Scholar 

  • Jayawant AM, Lawton JS, Hsia PW, Damiano RJ, Jr. (1997). Hyperpolarized cardioplegic arrest with nicorandil: advantages over other potassium channel openers. Circulation 96(9 Suppl): II240–11246.

    Google Scholar 

  • Jayawant AM, Stephenson ER, Jr., Damiano RJ, Jr. (1999). 2,3-Butanedione monoxime cardioplegia: advantages over hyperkalemia in blood-perfused isolated hearts. Ann Thorac Surg 67(3): 618–623.

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic A, Alekseev AE, Lopez JR, Shen WK, Terzic A (1997). Adenosine prevents hyperkalemia-induced calcium loading in cardiac cells: relevance for cardioplegia. Ann Thorac Surg 63(1): 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Jynge P, Hearse DJ, Braimbridge MV (1977). Myocardial protection during ischemic cardiac arrest. A possible hazard with calcium-free cardioplegic infusates. J Thorac Cardiovasc Surg 73(6): 848–855.

    PubMed  CAS  Google Scholar 

  • Jynge P, Hearse DJ, Braimbridge MV (1978). Protection of the ischemic myocardium. Volume-duration relationships and the efficacy of myocardial infusates. J Thorac Cardiovasc Surg 76(5): 698–705.

    PubMed  CAS  Google Scholar 

  • Katayama O, Ledingham SJ, Amrani M, Smolenski RT, Lachno DR, Jayakumar J, Yacoub MH (1997). Functional and metabolic effects of adenosine in cardioplegia: role of temperature and concentration. Ann Thorac Surg 63(2): 449–454; discussion 454–445.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch U, Rodewald G, Kalmar P (1972). Induced ischemic arrest. Clinical experience with cardioplegia in open-heart surgery. J Thorac Cardiovasc Surg 63(1): 121–130.

    PubMed  CAS  Google Scholar 

  • Kleber AG (1983). Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ Res 52(4): 442–450.

    Article  PubMed  CAS  Google Scholar 

  • Kronon MT, Allen BS, Hernan J, Halldorsson AO, Rahman S, Buckberg GD, Wang T, Ilbawi MN (1999). Superiority of magnesium cardioplegia in neonatal myocardial protection. Ann Thorac Surg 68(6): 2285–2291; discussion 2291–2282.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn-Regnier F, Geissler HJ, Marohl S, Mehlhorn U, De Vivie ER (2002). Beta-blockade in 200 coronary bypass grafting procedures. Thorac Cardiovasc Surg 50(3): 164–167.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn-Regnier F, Natour E, Dhein S, Dapunt O, Geissler HJ, LaRose K, Gorg C, Mehlhorn U (1999). Beta-blockade versus Buckberg blood-cardioplegia in coronary bypass operation. Eur J Cardiothorac Surg 15(1): 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Lawton JS, Harrington GC, Allen CT, Hsia PW, Damiano RJ, Jr. (1996). Myocardial protection with pinacidil cardioplegia in the blood-perfused heart. Ann Thorac Surg 61(6): 1680–1688.

    Article  PubMed  CAS  Google Scholar 

  • Lawton JS, Sepic JD, Allen CT, Hsia PW, Damiano RJ, Jr. (1996). Myocardial protection with potassium-channel openers is as effective as St. Thomas’ solution in the rabbit heart. Ann Thorac Surg 62(1): 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Lopez JR, Jahangir R, Jahangir A, Shen WK, Terzic A (1996). Potassium channel openers prevent potassium-induced calcium loading of cardiac cells: possible implications in cardioplegia. J Thorac Cardiovasc Surg 112(3): 820–831.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Chambers DJ (2008). Myocardial protection: efficacy of a novel magnesium-based cardioplegia (RS-C) compared to St. Thomas’ Hospital cardioplegic solution. Interact Cardiovasc Thorac Surg 7(5): 745–749.

    Article  PubMed  Google Scholar 

  • Maskal SL, Cohen NM, Hsia PW, Wechsler AS, Damiano RJ, Jr. (1995). Hyperpolarized cardiac arrest with a potassium-channel opener, aprikalim. J Thorac Cardiovasc Surg 110(4 Pt 1): 1083–1095.

    Article  PubMed  CAS  Google Scholar 

  • McAllister RE, Noble D, Tsien RW (1975). Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 251(1): 1–59.

    PubMed  CAS  Google Scholar 

  • McCully JD, Levitsky S (1997). Mechanisms of in vitro cardioprotective action of magnesium on the aging myocardium. Magnes Res 10(2): 157–168.

    PubMed  CAS  Google Scholar 

  • McCully JD, Levitsky S (2003). The mitochondrial K(ATP) channel and cardioprotection. Ann Thorac Surg 75(2): S667–S673.

    Article  PubMed  Google Scholar 

  • Mehlhorn U, Allen SJ, Adams DL, Davis KL, Gogola GR, Warters RD (1996). Cardiac surgical conditions induced by beta-blockade: effect on myocardial fluid balance. Ann Thorac Surg 62(1): 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn U, Sauer H, Kuhn-Regnier F, Sudkamp M, Dhein S, Eberhardt F, Grond S, Horst M, Hekmat K, Geissler HJ, Warters RD, Allen SJ, Rainer de Vivie E (1999). Myocardial beta-blockade as an alternative to cardioplegic arrest during coronary artery surgery. Cardiovasc Surg 7(5): 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Menasche P, Mouas C, Grousset C (1996). Is potassium channel opening an effective form of preconditioning before cardioplegia? Ann Thorac Surg 61(6): 1764–1768.

    Article  PubMed  CAS  Google Scholar 

  • Mentzer RM Jr., Birjiniuk V, Khuri S, Lowe JE, Rahko PS, Weisel RD, Wellons HA, Barker ML, Lasley RD (1999). Adenosine myocardial protection: preliminary results of a phase II clinical trial. Ann Surg 229(5): 643–649.

    Article  PubMed  Google Scholar 

  • Miller RD (1998). Local anesthetics. In Basic and Clinical Pharmacology. Katzung BG. Stamford, Appleton and Lange: 425–433.

    Google Scholar 

  • Niedergerke R, Orkand RK (1966). The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration. J Physiol 184(2): 312–334.

    PubMed  CAS  Google Scholar 

  • Opie LH (2004). Channels, Pumps, and Exchangers. In Heart Physiology From Cell to Circulation. Philadelphia, Lippincott Williams & Wilkins: 73–118.

    Google Scholar 

  • Pirk J, Kolar F, Ost’adal B, Sedivy J, Stambergova A, Kellovsky P (1999). The effect of the ultrashort beta-blocker esmolol on cardiac function recovery: an experimental study. Eur J Cardiothorac Surg 15(2): 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Popovic J, Mitic R, Sabo A, Mikov M, Jakovljevic V, Dakovic-Svajcer K (2006). Spline functions in convolutional modeling of verapamil bioavailability and bioequivalence. II: study in healthy volunteers. Eur J Drug Metab Pharmacokinet 31(2): 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Galinanes M, Hearse DJ (1995). Protective effect of nicorandil as an additive to the solution for continuous warm cardioplegia. J Thorac Cardiovasc Surg 110(4 Pt 1): 1063–1072.

    Article  PubMed  CAS  Google Scholar 

  • Quast U, Guillon JM, Cavero I (1994). Cellular pharmacology of potassium channel openers in vascular smooth muscle. Cardiovasc Res 28(6): 805–810.

    Article  PubMed  CAS  Google Scholar 

  • Rich TL, Langer GA, Klassen MG (1988). Two components of coupling calcium in single ventricular cell of rabbits and rats. Am J Physiol 254(5 Pt 2): H937–H946.

    PubMed  CAS  Google Scholar 

  • Ringer S (1883). A further Contribution regarding the influence of the different Constituents of the Blood on the Contraction of the Heart. J Physiol 4(1): 29–42.

    Google Scholar 

  • Saint DA (2006). The role of the persistent Na(+) current during cardiac ischemia and hypoxia. J Cardiovasc Electrophysiol 17(Suppl 1): S96–S103.

    Article  PubMed  Google Scholar 

  • Schubert T, Vetter H, Owen P, Reichart B, Opie LH (1989). Adenosine cardioplegia. Adenosine versus potassium cardioplegia: effects on cardiac arrest and postischemic recovery in the isolated rat heart. J Thorac Cardiovasc Surg 98(6): 1057–1065.

    PubMed  CAS  Google Scholar 

  • Sellevold OF, Berg EM, Levang OW (1995). Procaine is effective for minimizing postischemic ventricular fibrillation in cardiac surgery. Anesth Analg 81(5): 932–938.

    PubMed  CAS  Google Scholar 

  • Shattock MJ, Hearse DJ, Fry CH (1987). The ionic basis of the anti-ischemic and anti-arrhythmic properties of magnesium in the heart. J Am Coll Nutr 6(1): 27–33.

    PubMed  CAS  Google Scholar 

  • Sloots KL, Vinten-Johansen J, Dobson GP (2007). Warm nondepolarizing adenosine and lidocaine cardioplegia: continuous versus intermittent delivery. J Thorac Cardiovasc Surg 133(5): 1171–1178.

    Article  PubMed  CAS  Google Scholar 

  • Snabaitis AK, Chambers DJ (1999). Long-term myocardial preservation: beneficial and additive effects of polarized arrest (Na+-channel blockade), Na+/H+-exchange inhibition, and Na+/K+/2Cl- -cotransport inhibition combined with calcium desensitization. Transplantation 68(10): 1444–1453.

    Article  PubMed  CAS  Google Scholar 

  • Snabaitis AK, Shattock MJ, Chambers DJ (1997). Comparison of polarized and depolarized arrest in the isolated rat heart for long-term preservation. Circulation 96(9): 3148–3156.

    Article  PubMed  CAS  Google Scholar 

  • Snabaitis AK, Shattock MJ, Chambers DJ (1999). Long-term myocardial preservation: effects of hyperkalemia, sodium channel, and Na/K/2Cl cotransport inhibition on extracellular potassium accumulation during hypothermic storage. J Thorac Cardiovasc Surg 118(1): 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Sperelakis N, Sunagawa M, Nakamura M (2001). Electrogenesis of the resting potential. In Heart physiology and pathophysiology. Sperelakis N, Kurachi Y, Terzic A and Cohen MV. San Diego, Academic Press: 175–198.

    Google Scholar 

  • Steenbergen C, Murphy E, Watts JA, London RE (1990). Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res 66(1): 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Sternbergh WC, Brunsting LA, Abd-Elfattah AS, Wechsler AS (1989). Basal metabolic energy requirements of polarized and depolarized arrest in rat heart. Am J Physiol 256(3 Pt 2): H846–851.

    PubMed  CAS  Google Scholar 

  • Stringham JC, Paulsen KL, Southard JH, Fields BL, Belzer FO (1992). Improved myocardial ischemic tolerance by contractile inhibition with 2,3-butanedione monoxime. Ann Thorac Surg 54(5): 852–859; discussion 859–860.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto S, Puddu PE, Monti F, Schiariti M, Campa PP, Marino B (1994). Pretreatment with the adenosine triphosphate-sensitive potassium channel opener nicorandil and improved myocardial protection during high-potassium cardioplegic hypoxia. J Thorac Cardiovasc Surg 108(3): 455–466.

    PubMed  CAS  Google Scholar 

  • Swanson DK, Pasaoglu I, Berkoff HA, Southard JA, Hegge JO (1988). Improved heart preservation with UW preservation solution. J Heart Transplant 7(6): 456–467.

    PubMed  CAS  Google Scholar 

  • Thomson PD, Melmon KL, Richardson JA, Cohn K, Steinbrunn W, Cudihee R, Rowland M (1973). Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans. Ann Intern Med 78(4): 499–508.

    PubMed  CAS  Google Scholar 

  • Tsukube T, McCully JD, Metz KR, Cook CU, Levitsky S (1997). Amelioration of ischemic calcium overload correlates with high-energy phosphates in senescent myocardium. Am J Physiol 273(1 Pt 2): H418–425.

    PubMed  CAS  Google Scholar 

  • Tyers GF, Todd GJ, Niebauer IM, Manley NJ, Waldhausen JA (1974). Effect of intracoronary tetrodotoxin on recovery of the isolated working rat heart from sixty minutes of ischemia. Circulation 50(2 Suppl II): 175–180.

    Google Scholar 

  • Vahl CF, Bonz A, Hagl C, Hagl S (1994). Reversible desensitization of the myocardial contractile apparatus for calcium. A new concept for improving tolerance to cold ischemia in human myocardium? Eur J Cardiothorac Surg 8(7): 370–378.

    Article  PubMed  CAS  Google Scholar 

  • Vahl CF, Bonz A, Hagl C, Timek T, Herold U, Fuchs H, Kochsiek N, Hagl S (1995). “Cardioplegia on the contractile apparatus level”: evaluation of a new concept for myocardial preservation in perfused pig hearts. Thorac Cardiovasc Surg 43(4): 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Vouhe PR, Helias J, Grondin CM (1980). Myocardial protection through cold cardioplegia using diltiazem, a calcium channel blocker. Ann Thorac Surg 30(4): 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Walgama OV, Shattock MJ, Chambers DJ (2000). Efficacy of a K-ATP channel opener to induce myocardial arrest: species differences. J Mol Cell Cardiol 32: A40.

    Google Scholar 

  • Walgama OV, Shattock MJ, Chambers DJ (2000). Myocardial arrest and protection: dual effect of a K-channel opener and Na-channel blocker as an alternative to hyperkalemia. J Mol Cell Cardiol 32: A41.

    Google Scholar 

  • Ward JW, McBurney A, Farrow PR, Sharp P (1984). Pharmacokinetics and hypotensive effect in healthy volunteers of pinacidil, a new potent vasodilator. Eur J Clin Pharmacol 26(5): 603–608.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Watanabe G, Tomita S, Tabata S (2007). Lidocaine-magnesium blood cardioplegia was equivalent to potassium blood cardioplegia in left ventricular function of canine heart. Interact Cardiovasc Thorac Surg 6(2): 172–176.

    Article  PubMed  Google Scholar 

  • Yamamoto F, Manning AS, Braimbridge MV, Hearse DJ (1985). Calcium antagonists and myocardial protection during cardioplegic arrest. Adv Myocardiol 6: 545–562.

    PubMed  CAS  Google Scholar 

  • Zaroslinski J, Borgman RJ, O'Donnell JP, Anderson WG, Erhardt PW, Kam ST, Reynolds RD, Lee RJ, Gorczynski RJ (1982). Ultra-short acting beta-blockers: a proposal for the treatment of the critically ill patient. Life Sci 31(9): 899–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Chambers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Chambers, D.J., Fallouh, H.B. (2011). New Approaches to Cardioplegia: Alternatives to Hyperkalemia. In: Podesser, B., Chambers, D. (eds) New Solutions for the Heart. Springer, Vienna. https://doi.org/10.1007/978-3-211-85548-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-85548-5_12

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-85547-8

  • Online ISBN: 978-3-211-85548-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics