Skip to main content

Tight contact technique during side-to-side laser tissue soldering of rabbit aortas improves tensile strength

  • Conference paper
Changing Aspects in Stroke Surgery: Aneurysms, Dissections, Moyamoya Angiopathy and EC-IC Bypass

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 103))

Abstract

Background

Cerebral revascularization may be indicated either for blood flow preservation or flow augmentation, often in clinical situations where neither endovascular nor standard surgical intervention can be performed. Cerebral revascularization can be performed by using a temporary occlusive or a non-occlusive technique. Both of these possibilities have their specific range of feasibility. Therefore non-occlusive revascularization techniques have been developed. To further reduce the risks for patients, less time consuming, sutureless techniques such as laser tissue soldering are currently being investigated.

Method

In the present study, a new technique for side-to-side anastomosis was developed. Using a’ sandwich technique’, two vessels are kept in close contact during the laser soldering. Thoraco-abdominal aortas from 24 different rabbits were analyzed for laser irradiation induced tensile strength. Two different irradiation modes (continuous and pulsed) were used. The results were compared to conventional, noncontact laser soldering. Histology was performed using HE, Mason’s Trichrome staining.

Findings

The achieved tensile strengths were significantly higher using the close contact’ sandwich technique’ as compared to the conventional adaptation technique. Furthermore, tensile strength was higher in the continuously irradiated specimen as compared to the specimen undergoing pulsed laser irradiation. The histology showed similar denaturation areas in both groups. The addition of a collagen membrane between vessel components reduced the tensile strength.

Conclusion

These first results proved the importance of close and tight contact during the laser soldering procedure thus enabling the development of a’ sandwich laser irradiation device’ for in vivo application in the rabbit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The EC/IC Bypass Study Group (1985) The international cooperative study of extracranial/intracranial arterial anastomosis (EC/IC bypass study): methodology and entry characteristics. Stroke 16: 397–406

    Google Scholar 

  2. The EC-IC bypass study (1987) N Engl J Med 317: 1030–1032

    Google Scholar 

  3. Albertengo JB, Rodriguez A, Buncke HJ, Hall EJ (1981) A comparative study of flap survival rates in end-to-end and end-to-side microvascular anastomosis. Plast Reconstr Surg 67: 194–199

    Article  PubMed  CAS  Google Scholar 

  4. Amaducci L, Flamm ES, Haynes RB, Mohr JP, Peerless SJ, Robertson JT, Tulleken CA, Yonekawa Y (1982) The international EC/IC bypass study. Stroke 13: 247–248

    PubMed  CAS  Google Scholar 

  5. Barnett HJ, Peerless SJ, McCormick CW (1980) In answer to the question: ‘As compared to what?’ A progress report on the EC /IC bypass study. Stroke 11: 137–140

    PubMed  CAS  Google Scholar 

  6. Barrieras D, Reddy PP, McLorie GA, Bagli D, Khoury AE, Farhat W, Lilge L, Merguerian PA (2000) Lessons learned from laser tissue soldering and fibrin glue pyeloplasty in an in vivo porcine model. J Urol 164: 1106–1110

    Article  PubMed  CAS  Google Scholar 

  7. Bass LS, Treat MR (1995) Laser tissue welding: a comprehensive review of current and future clinical applications review. Lasers Surg Med 17: 315–349

    Article  PubMed  CAS  Google Scholar 

  8. Byrd BD, Heintzelman DL, McNally-Heintzelman KM (2003) Absorption properties of alternative chromophores for use in laser tissue soldering applications. Biomed Sci Instrum 39: 6–11

    PubMed  CAS  Google Scholar 

  9. Caneschi S, Pirelli A, Morosi M (1988) The use of human fibrin glue and of the suture in polyglactin 910 in extraintracranial bypass. J Neurosurg Sci 32: 65–68

    PubMed  CAS  Google Scholar 

  10. Cloft HJ, Altes TA, Marx WF, Raible RJ, Hudson SB, Helm GA, Mandell JW, Jensen ME, Dion JE, Kallmes DF (1999) Endovascular creation of an in vivo bifurcation aneurysm model in rabbits. Radiology 213: 223–228

    PubMed  CAS  Google Scholar 

  11. Diaz FG, Ausman JI (1986) The EC-IC bypass study: does it answer the question. Henry Ford Hosp Med J 34: 75–77

    PubMed  CAS  Google Scholar 

  12. Dotson RJN, Bishop AT, Wood MB, Schroeder A (1998) End-toend versus end-to-side arterial anastomosis patency in microvascular surgery. Microsurg 18: 125–128

    Article  CAS  Google Scholar 

  13. Frazier OH, Painvin GA, Morris JR, Thomsen S, Neblett CR (1985) Laser-assisted microvascular anastomoses: angiographic and anatomopathologic studies on growing microvascular anastomoses: preliminary report. Surgery 97: 585–590

    PubMed  CAS  Google Scholar 

  14. Frazier OH, Shehab SA, Radovancevic B, McAllister HA Jr, Parnis SM (1988) Laser-assisted anastomosis of large-diameter vessels with the carbon dioxide laser. J Thorac Cardiovasc Surg 96: 454–456

    PubMed  CAS  Google Scholar 

  15. Frazier OH, Shehab SA, Zirl R, Radovancevic B, Nakatani T, Bossart MI, Parnis SM (1989) Anastomosis of bypass grafts using a low-powered CO2 laser. Lasers Surg Med 9: 30–36

    Article  PubMed  CAS  Google Scholar 

  16. Gennaro M, Ascer E, Mohan C, Wang S (1991) A comparison of CO2 laser-assisted venous anastomoses and conventional suture techniques: patency, aneurysm formation, and histologic differences. J Vasc Surg 14: 605–613

    Article  PubMed  CAS  Google Scholar 

  17. Gilmour TM, Riley JN, Moser DL, McNally-Heintzelman KM (2002) Solubility studies of albumin protein solders used for laser-assisted tissue repair. Biomed Sci Instrum 38: 345–350

    PubMed  CAS  Google Scholar 

  18. The EC/IC bypass study Group (1985) Failure of extracranialintracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med 313: 1191–1200

    Google Scholar 

  19. Haina D, Landthaler M, Braun-Falco O, Waidelich W (1987) Comparison of the maximum coagulation depth in human skin for different types of medical lasers. Lasers Surg Med 7: 355–362

    Article  PubMed  CAS  Google Scholar 

  20. Heiss WD (1986) The EC/IC Bypass Study. A therapeutic hope was not realized. Dtsch Med Wochenschr 111: 246–247

    PubMed  CAS  Google Scholar 

  21. Hidalgo DA, Disa JJ, Cordeiro PG, Hu QY (1998) A review of 716 consecutive free flaps for oncologic surgical defects: refinement in donor-site selection and technique. Plast Reconstr Surg 102: 722–732

    Article  PubMed  CAS  Google Scholar 

  22. Hoffman GT, Byrd BD, Soller EC, Heintzelman DL, McNally-Heintzelman KM (2003) Effect of varying chromophores used in light-activated protein solders on tensile strength and thermal damage profile of repairs. Biomed Sci Instrum 39: 12–17

    PubMed  CAS  Google Scholar 

  23. Hoffman GT, Soller EC, McNally-Heintzelman KM (2002) Biodegradable synthetic polymer scaffolds for reinforcement of albumin protein solders used for laser-assisted tissue repair. Biomed Sci Instrum 38: 53–58

    PubMed  CAS  Google Scholar 

  24. Hughes PE, How TV (1995) Flow structures at the proximal sideto-end anastomosis. Influence of geometry and flow division. J Biomech Eng 117: 224–236

    Article  PubMed  CAS  Google Scholar 

  25. Khadem J, Truong T, Ernest JT (1994) Photodynamic biologic tissue glue. Cornea 13: 406–410

    Article  PubMed  CAS  Google Scholar 

  26. Khouri RK, Cooley BC, Kunselman AR, Landis JR, Yeramian P (1998) A prospective study of microvascular free-flap surgery and outcome. Plast Reconstr Surg 102: 711–721

    Article  PubMed  CAS  Google Scholar 

  27. Kirsch AJ, Chang DT, Kayton ML, Libutti SK, Connor JP, Hensle TW (1996) Effects of diode laser welding with dye-enhanced glue on tensile strength of sutures commonly used in urology. Lasers Surg Med 18: 167–170

    Article  PubMed  CAS  Google Scholar 

  28. Lanzino G, diPierro CG, Laws ER (1998) Sutureless repair of major intracranial vessels with the Sundt clip-graft: technical note. Acta Neurochir (Wien) 140: 491–493

    Article  CAS  Google Scholar 

  29. Lauto A, Kerman I, Ohebshalon M, Felsen D, Poppas DP (1999) Two-layer film as a laser soldering biomaterial. Lasers Surg Med 25: 250–256

    Article  PubMed  CAS  Google Scholar 

  30. McDowell F, Flamm ES (1986) EC/IC bypass study. Stroke 17: 1–2

    PubMed  CAS  Google Scholar 

  31. McNally KM, Sorg BS, Chan EK, Welch AJ, Dawes JM, Owen ER (1999) Optimal parameters for laser tissue soldering. Part I: tensile strength and scanning electron microscopy analysis. Lasers Surg Med 24: 319–331

    Article  PubMed  CAS  Google Scholar 

  32. McNally KM, Sorg BS, Chan EK, Welch AJ, Dawes JM, Owen ER (2000) Optimal parameters for laser tissue soldering: II. Premixed versus separate dye-solder techniques. Lasers Surg Med 26: 346–356

    Article  PubMed  CAS  Google Scholar 

  33. McNally KM, Sorg BS, Welch AJ, Dawes JM, Owen ER (1999) Photothermal effects of laser tissue soldering. Phys Med Biol 44: 983–1002

    Article  PubMed  CAS  Google Scholar 

  34. Menovsky T, Beek JF (2003) Carbon dioxide laser-assisted nerve repair: effect of solder and suture material on nerve regeneration in rat sciatic nerve. Microsurg 23:109–116

    Article  Google Scholar 

  35. Merz B (1986) Neurosurgeons address EC/IC study; question controlled surgical trials. Jama 256: 165–167

    Article  PubMed  CAS  Google Scholar 

  36. Ott B, Constantinescu MA, Erni D, Banic A, Schaffner T, Frenz M (2004) Intraluminal laser light source and external solder: in vivo evaluation of a new technique for microvascular anastomosis. Lasers Surg Med 35: 312–316

    Article  PubMed  Google Scholar 

  37. Ott B, Zuger BJ, Erni D, Banic A, Schaffner T, Weber HP, Frenz M (2001) Comparative in vitro study of tissue welding using a 808 nm diode laser and a Ho:YAG laser. Lasers Med Sci 16: 260–266

    Article  PubMed  CAS  Google Scholar 

  38. Oz MC, Johnson JP, Parangi S, Chuck RS, Marboe CC, Bass LS, Nowygrod R, Treat MR (1990) Tissue soldering by use of indocyanine green dye-enhanced fibrinogen with the near infrared diode laser. J Vasc Surg 11: 718–725

    Article  PubMed  CAS  Google Scholar 

  39. Pohl D, Bass LS, Stewart R, Chiu DT (1998) Effect of optical temperature feedback control on patency in laser-soldered microvascular anastomosis. J Reconstr Microsurg 14: 23–30

    PubMed  CAS  Google Scholar 

  40. Reinert M, Verweij BH, Schaffner T, Mihalache G, Schroth G, Seiler R, Tulleken CA (2006) Expanded polytetrafluoroethylene graft for bypass surgery using the excimer laser-assisted nonocclusive anastomosis technique. J Neurosurg 105: 758–764

    Article  PubMed  CAS  Google Scholar 

  41. Sekhar L, Stimac D, Bakir A, Rak R (2005) Reconstruction options for complex middle cerebral artery aneurysms. Neurosurgery 56: 66–74

    Article  PubMed  Google Scholar 

  42. Soller EC, Hoffman GT, McNally-Heintzelman KM (2002) Use of an infrared temperature monitoring system to determine optimal temperature for laser-solder tissue repair. Biomed Sci Instrum 38: 339–344

    PubMed  Google Scholar 

  43. Soller EC, Hoffman GT, McNally-Heintzelman KM (2003) Optimal parameters for arterial repair using light-activated surgical adhesives. Biomed Sci Instrum 39: 18–23

    PubMed  CAS  Google Scholar 

  44. Streefkerk HJ, Bremmer JP, Tulleken CA (2005) The ELANA technique: high flow revascularization of the brain. Acta Neurochir Suppl 94: 143–148

    Google Scholar 

  45. Streefkerk HJ, Bremmer JP, van Weelden M, van Dijk RR, de Winter E, Beck RJ, Tulleken CA (2006) The excimer laser-assisted nonocclusive anastomosis practice model: development and application of a tool for practicing microvascular anastomosis techniques. Neurosurgery (Suppl 1) 58: 148–156

    Google Scholar 

  46. Streefkerk HJ, Kleinveld S, Koedam EL, Bulder MM, Meelduk HD, Verdaasdonk RM, Beck RJ, van der Zwan B, Tulleken CA (2005) Long-term reendothelialization of excimer laser-assisted nonocclusive anastomoses compared with conventionally sutured anastomoses in pigs. J Neurosurg 103: 328–336

    Article  PubMed  Google Scholar 

  47. Streefkerk HJ, Van der Zwan A, Verdaasdonk RM, Beck HJ, Tulleken CA (2003) Cerebral revascularization. Adv Tech Stand Neurosurg 28: 145–225

    PubMed  CAS  Google Scholar 

  48. Streefkerk HJ, Wolfs JF, Sorteberg W, Sorteberg AG, Tulleken CA (2004) The ELANA technique: constructing a high flow bypass using a non-occlusive anastomosis on the ICA and a conventional anastomosis on the SCA in the treatment of a fusiform giant basilar trunk aneurysm. Acta Neurochir (Wien) 146: 1009–1019

    Article  CAS  Google Scholar 

  49. Tulleken CA, van der Zwan A, van Rooij WJ, Ramos LM (1998) High-flow bypass using nonocclusive excimer laser-assisted end-toside anastomosis of the external carotid artery to the P1 segment of the posterior cerebral artery via the sylvian route. Technical note. J Neurosurg 88: 925–927

    CAS  Google Scholar 

  50. White RA, Kopchok G, Peng SK, Fujitani R, White G, Klein S, Uitto J (1987) Laser vascular welding — how does it work? Ann Vasc Surg 1: 461–464

    Article  PubMed  CAS  Google Scholar 

  51. Xie H, Bendre SC, Burke AP, Gregory KW, Furnary AP (2004) Laser-assisted vascular end to end anastomosis of elastin heterograft to carotid artery with an albumin stent: a preliminary in vivo study. Lasers Surg Med 35: 201–205

    Article  PubMed  Google Scholar 

  52. Xie H, Shaffer BS, Prahl SA, Gregory KW (2002) Intraluminal albumin stent assisted laser welding for ureteral anastomosis. Lasers Surg Med 31: 225–229

    Article  PubMed  Google Scholar 

  53. Yamada M, Miyasaka Y, Irikura K, Nagai S, Tanaka R (1998) A canine model of intracranial arteriovenous shunt with acute cerebral venous hypertension. Neurol Res 20: 73–78

    PubMed  CAS  Google Scholar 

  54. Yanaka K, Fujita K, Noguchi S, Matsumaru Y, Asakawa H, Anno I, Meguro K, Nose T (2003) Intraoperative angiographic assessment of graft patency during extracranial-intracranial bypass procedures. Neurol Med Chir (Tokyo) 43: 509–513

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Alfieri, A. et al. (2008). Tight contact technique during side-to-side laser tissue soldering of rabbit aortas improves tensile strength. In: Yonekawa, Y., Tsukahara, T., Valavanis, A., Khan, N. (eds) Changing Aspects in Stroke Surgery: Aneurysms, Dissections, Moyamoya Angiopathy and EC-IC Bypass. Acta Neurochirurgica Supplements, vol 103. Springer, Vienna. https://doi.org/10.1007/978-3-211-76589-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-76589-0_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-76588-3

  • Online ISBN: 978-3-211-76589-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics