Skip to main content

COPI: mechanisms and transport roles

  • Chapter
  • 1385 Accesses

Abstract

Coat protein I (COPI) is considered one of the best characterized coat complexes, which represent the core machinery by which vesicle formation and cargo sorting are coupled to initiate vesicular transport (Bonifacino and Lippincott-Schwartz 2003; McMahon and Mills 2004). Our understanding of the molecular mechanisms by which COPI acts and the transport path- ways in which it operates has evolved significantly over the years, and with considerable accompanying controversy. These aspects of COPI research will be reviewed. See also Fig. 1 for a timeline that summarizes its key discoveries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken A (1996) 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol 6: 341–347

    Article  Google Scholar 

  • Aoe T, Cukierman E, Lee A, Cassel D, Peters PJ, Hsu VW (1997) The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. EMBOJ 16: 7305–7316

    Article  CAS  Google Scholar 

  • Aoe T, Lee AJ, Van Donselaar E, Peters PJ, Hsu VW (1998) Modulation of intracellular transport by transported proteins: insight from regulation of COPI-mediated transport. Proc Natl Acad Sci USA 95: 1624–1629

    Article  PubMed  CAS  Google Scholar 

  • Appenzeller C, Andersson H, Kappeler F, Hauri HP (1999) The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Balch WE, Dunphy WG, Braell WA, Rothman JE (1984) Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39: 405–416

    Article  PubMed  CAS  Google Scholar 

  • Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77: 895–907

    Article  PubMed  CAS  Google Scholar 

  • Bigay J, Gounon P, Robineau S, Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426: 563–566

    Article  PubMed  CAS  Google Scholar 

  • Bonfanti L, Mironov AA Jr, Martinez-Menarguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagentraverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95: 993–1003

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4: 409–414

    Article  PubMed  CAS  Google Scholar 

  • Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Sollner TH, Rothman JE, Wieland FT (1999) Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96: 495–506

    Article  PubMed  CAS  Google Scholar 

  • Casanova JE (2007) Regulation of arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8(11): 1476–1485

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Paris S, Antonny B, Robineau S, Beraud-Dufour S, Jackson CL, Chabre M (1996) A human exchange factor for ARF conta ins Sec7-and pleckstrin-homology domains. Nature 384: 481–484

    Article  PubMed  CAS  Google Scholar 

  • Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Cosson P, Amherdt M, Rothman JE, Orci L (2002) A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells. Proc Natl Acad Sci USA 99: 12831–12834

    Article  PubMed  CAS  Google Scholar 

  • Cosson P, Demolliere C, Hennecke S, Duden R, Letourneur F (1996) Delta-and zeta-COP, two coatomersubunits homologous to clathrin-associated proteins, are involved in ER retrieval. EMBOJ 15: 1792–1798

    Google Scholar 

  • Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263: 1629–1631

    Article  PubMed  CAS  Google Scholar 

  • Cukierman E, Huber I, Rotman M, Cassel D (1995) The ARF1-GTPase-Activating Protein: zinc finger motif and Golgi complex localization. Science 270: 1999–2002

    Article  PubMed  CAS  Google Scholar 

  • D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7: 347–358

    Article  PubMed  CAS  Google Scholar 

  • Di Girolamo M, Silletta MG, De Matteis MA, Braca A, Colanzi A, Pawlak D, Rasenick MM, Luini A, Corda D (1995) Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein beta gamma subunit complex. Proc Natl Acad Sci USA 92: 7065–7069

    Article  PubMed  Google Scholar 

  • Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A, Paccaud JP, Thomas DY, Bergeron JJ, Nilsson T (1998) gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J Cell Biol 140: 751–765

    Article  PubMed  CAS  Google Scholar 

  • Donaldson JG, Cassel D, Kahn RA, Klausner RD (1992a) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci USA 89: 6408–6412

    Article  PubMed  CAS  Google Scholar 

  • Donaldson JG, Finazzi D, Klausner RD (1992b) Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360: 350–352

    Article  PubMed  CAS  Google Scholar 

  • Donaldson JG, Lippincott-Schwartz J, Klausner RD (1991) Guanine nucleotides modulate the effects of brefeldin A in semipermeable cells: regulation of the association of a 110-kDa peripheral membrane protein with the Golgi apparatus. Journal of Cell Biology 112:579–588

    Article  PubMed  CAS  Google Scholar 

  • Duden R, Griffiths G, Frank R, Argos P, Kreis TE (1991) Beta-COP, a 110 kDa protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64: 649–665

    Article  PubMed  CAS  Google Scholar 

  • Eugster A, Frigerio G, Dale M, Duden R (2000) COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 19: 3905–3917

    Article  PubMed  CAS  Google Scholar 

  • Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155: 193–200

    Article  PubMed  CAS  Google Scholar 

  • Franco M, Chardin P, Chabre M, Paris S (1996) Myristoylation-facilitated binding of the G protein ARF1-GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor. J Biol Chem 271: 1573–1578

    Article  PubMed  CAS  Google Scholar 

  • Frank S, Upender S, Hansen SH, Casanova JE (1998a) ARNO is a guanine nucleotide exchange factor for ADP-ribosylation factor 6. J Biol Chem 273: 23–27

    Article  PubMed  CAS  Google Scholar 

  • Frank SR, Hatfield JC, Casanova JE (1998b) Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol Biol Cell 9: 3133–3146

    PubMed  CAS  Google Scholar 

  • Gallop JL, Butler PJ, McMahon HT (2005) Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438: 675–678

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata R, Szul T, Alvarez C, Sztul E (2003) ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum-Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol Biol Cell 14: 2250–2261

    Article  PubMed  CAS  Google Scholar 

  • Gaynor EC, Emr SD (1997) COPI-independentanterograde transport: cargo-selective ER to Golgi protein transport in yeast COPI mutants. J Cell Biol 136: 789–802

    Article  PubMed  CAS  Google Scholar 

  • Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1: 423–430

    Article  PubMed  CAS  Google Scholar 

  • Goldberg J (2000) Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100: 671–679

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Vasile E, Krieger M (1994) Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon-COP. J Cell Biol 125: 1213–1224

    Article  PubMed  CAS  Google Scholar 

  • Harrison-Lavoie KJ, Lewis VA, Hynes GM, Collison KS, Nutland E, Willison KR (1993) A 102 kDa subunit of a Golgi-associated particle has homology to beta subunits of trimeric G proteins. EMBO J 12: 2847–2853

    PubMed  CAS  Google Scholar 

  • Harter C, Pavel J, Coccia F, Draken E, Wegehingel S, Tschochner H, Wieland F (1996) Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway. Proc Natl Acad Sci USA 93: 1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360: 352–354

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22: 5296–5307

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GR, Rahl PB, Collins RN, Cerione RA (2003) Conserved structural motifs in intracellulartrafficking pathways: structure ofthegammaCOPappendage domain. Mol Cell 12:615–625

    Article  PubMed  CAS  Google Scholar 

  • Hosobuchi M, Kreis T, Schekman R (1992) SEC21 is a gene required for ER to Golgi protein transport that encodes a subunit of a yeast coatomer. Nature 360:603–605

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Randazzo PA (2007) Arf GAPs and their interacting proteins. Traffic 8: 1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs—engines for membranefusion. Nat Rev Mol Cell Biol 7: 631–643

    Article  PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1984) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259: 6228–6234

    PubMed  CAS  Google Scholar 

  • Kappeler F, Klopfenstein DR, Foguet M, Paccaud JP, Hauri HP (1997) The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J Biol Chem 272: 31801–31808

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto K, Yoshida Y, Tamaki H, Torii S, Shinotsuka C, Yamashina S, Nakayama K (2002) GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI Coat. Traffic 3: 483–495

    Article  PubMed  CAS  Google Scholar 

  • Kweon HS, Beznoussenko GV, Micaroni M, Polishchuk RS, Trucco A, Martella O, Di Giandomenico D, Marra P, Fusella A, Di Pentima A, et al (2004) Golgi enzymes are enriched in perforated zones of Golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 15:4710–4724

    Article  PubMed  CAS  Google Scholar 

  • Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T (1999) GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J 18: 4935–4948

    Article  PubMed  CAS  Google Scholar 

  • Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D, Dejgaard K, Weiss M, Nilsson T (2001) Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J Cell Biol 155: 1199–1212

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Yang JS, Hong W, Premont RT, Hsu VW (2005) ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J Cell Biol 168: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Letourneur F, Gaynor EC, Hennecke S, Demolliere C, Duden R, Emr SD, Riezman H, Cosson P (1994) Coatomer is essential for retrieva l of d ilysine-tagged proteins to the endoplasmic reticulum. Cell 79: 1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HR (1990) A human homologue of the yeast HDEL receptor. Nature 348: 162–163

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HR(1996) SNARE-mediated retrograde trafficfrom the Golgi complex to the endoplasmic reticulum. Cell 85: 205–215

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, Sweet DJ, Pelham HR (1990) The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61: 1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Donaldson JG, Schweizer A, Berger EG, Hauri HP, Yuan LC, Klausner RD (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60: 821–836

    Article  PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801–813

    Article  PubMed  CAS  Google Scholar 

  • Love HD, Lin CC, Short CS, Ostermann J (1998) Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport. J Cell Biol 140: 541–551

    Article  PubMed  CAS  Google Scholar 

  • Lowe M, Kreis TE (1995) In vitro assembly and disassembly of coatomer. J Biol Chem 270: 31364–31371

    Article  PubMed  CAS  Google Scholar 

  • Malsam J, Satoh A, Pelletier L, Warren G (2005) Golgin tethers define subpopulations of COPI vesicles. Science 307: 1095–1098

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Menarguez JA, Prekeris R, Oorschot VM, Scheller R, Slot JW, Geuze HJ, Klumperman J (2001) Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J Cell Biol 155: 1213–1224

    Article  PubMed  CAS  Google Scholar 

  • McMahon HT, Mills IG (2004) COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 16: 379–391

    Article  PubMed  CAS  Google Scholar 

  • Michelsen K, Schmid V, Metz J, Heusser K, Liebel U, Schwede T, Spang A, Schwappach B (2007) Novel cargo-binding site in the beta and delta subunits of coatomer. J Cell Biol 179: 209–217

    Article  PubMed  CAS  Google Scholar 

  • Mironov AA, Beznoussenko GV, Nicoziani P, Martella O, Trucco A, Kweon HS, Di Giandomenico D, Polishchuk RS, Fusella A, Lupetti P, et al (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155: 1225–1238

    Article  PubMed  CAS  Google Scholar 

  • Moelleken J, Malsam J, Betts MJ, Movafeghi A, Reckmann I, Meissner I, Hellwig A, Russell RB, Sollner T, Brugger B, Wieland FT (2007) Differential localization of coatomer complex isoforms within the Golgi apparatus. Proc Natl Acad Sci USA 104: 4425–4430

    Article  PubMed  CAS  Google Scholar 

  • Muniz M, Nuoffer C, Hauri HP, Riezman H (2000) The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol 148: 925–930

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907

    Article  PubMed  CAS  Google Scholar 

  • Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri HP, Ciavarella N, Kaufman RJ, Ginsburg D (1998) Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93: 61–70

    Article  PubMed  CAS  Google Scholar 

  • Nickel W, Malsam J, Gorgas K, Ravazzola M, Jenne N, Helms JB, Wieland FT (1998) Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTPgammaS in vitro. J Cell Sci 111: 3081–3090

    PubMed  CAS  Google Scholar 

  • O’Kelly I, Butler MH, Zilberberg N, Goldstein SA (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111: 577–588

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Amherdt M, Ravazzola M, Perrelet A, Rothman JE (2000a) Exclusion of Golgi residents from transport vesicles budding from Golgi cisternae in intact cells. J Cell Biol 150: 1263–1270

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46: 171–184

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Palmer DJ, Amherdt M, Rothman JE (1993) Coated vesicle assembly in the Golgi requires only coatomer ARF proteins from the cytosol. Nature 364: 732–734

    Article  CAS  Google Scholar 

  • Orci L, Ravazzola M, Volchuk A, Engel T, Gmachl M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (2000b) Anterograde flow of cargo across the Golgi stack potentially mediated via bidirectional “percolating ” COPI vesicles. Proc Natl Acad Sci USA 97: 10400–10405

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90: 335–349

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Tagaya M, Amherdt M, Perrelet A, Donaldson JG, Lippincott-Schwartz J, Klausner RD, Rothman JE (1991) Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell 64: 1183–1195

    Article  PubMed  CAS  Google Scholar 

  • Ostermann J, Orci L, Tani K, Amherdt M, Ravazzola M, Elazar Z, Rothman JE (1993) Stepwise assembly of functionally active transport vesicles. Cell 75: 1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Pavel J, Harter C, Wieland FT (1998) Reversible dissociation of coatomer: functional characterization of a beta/delta-coat protein subcomplex. Proc Natl Acad Sci USA 95: 2140–2145

    Article  PubMed  CAS  Google Scholar 

  • Pepperkok R, Whitney JA Gomez M, Kreis TE (2000) COPI vesicles accumulating in the presence of a GTP restricted arf 1 mutant are depleted of anterograde and retrograde cargo. J Cell Sci 113 (Pt 1): 135–144

    PubMed  CAS  Google Scholar 

  • Peyroche A, Courbeyrette R, Rambourg A, Jackson CL (2001) The ARF exchange factors Gea1p and Gea2p regulate Golgi structure and function in yeast. J Cell Sci 114: 2241–2253

    PubMed  CAS  Google Scholar 

  • Peyroche A, Paris S, Jackson CL (1996) Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384: 479–481

    Article  PubMed  CAS  Google Scholar 

  • Rabouille C, Klumperman J (2005) Opinion: the maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol 6: 812–817

    Article  PubMed  CAS  Google Scholar 

  • Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA (1995) The myristoylated amino terminus of ADP-ribosylation factor 1 is a phospholipid-and GTP-sensitive switch. J Biol Chem 270: 14809–14815

    Article  PubMed  CAS  Google Scholar 

  • Reinhard C, Harter C, Bremser M, Brugger B, Sohn K, Helms JB, Wieland F (1999) Receptor-induced polymerization of coatomer. Proc Natl Acad Sci USA 96: 1224–1228

    Article  PubMed  CAS  Google Scholar 

  • Reinhard C, Schweikert M, Wieland FT, Nickel W (2003) Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc Natl Acad Sci USA 100: 8253–8257

    Article  PubMed  CAS  Google Scholar 

  • Ringstad N, Gad H, Low P, Di Paolo G, Brodin L, Shupliakov O, De Camilli P (1999) Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24: 143–154

    Article  PubMed  CAS  Google Scholar 

  • Santy LC, Casanova JE (2001) Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol 154: 599–610

    Article  PubMed  CAS  Google Scholar 

  • Saraste J, Palade GE, Farquhar MG (1987) Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein. J Cell Biol 105: 2021–2029

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Soling HD (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401: 133–141

    Article  PubMed  CAS  Google Scholar 

  • Schweizer A, Fransen JA, Bachi T, Ginsel L, Hauri HP (1988) Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J Cell Biol 107: 1643–1653.

    Article  PubMed  CAS  Google Scholar 

  • Semenza JC, Hardwick KG, Dean N, Pelham HR (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61: 1349–1357.

    Article  PubMed  CAS  Google Scholar 

  • Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE (1991a) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67: 239–253

    Article  PubMed  CAS  Google Scholar 

  • Serafini T, Stenbeck G, Brecht A, Lottspeich F, Orci L, Rothman JE, Wieland FT (1991b) A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin. Nature 349: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Simpson F, Hussain NK, Qualmann B, Kelly RB, Kay BK, McPherson PS, Schmid SL (1999) SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Sohn K, Orci L, Ravazzola M, Amherdt M, Bremser M, Lottspeich F, Fiedler K, Helms JB, Wieland FT (1996) A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J Cell Biol 135: 1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Spang A, Matsuoka K, Hamamoto S, Schekman R, Orci L (1998) Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc Natl Acad Sci USA 95: 11199–11204

    Article  PubMed  CAS  Google Scholar 

  • Spano S, Silletta MG, Colanzi A, Alberti S, Fiucci G, Valente C, Fusella A, Salmona M, Mironov A, Luini A, Corda D (1999) Molecular cloning and functional characteriza-tion of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J Biol Chem 274: 17705–17710

    Article  PubMed  CAS  Google Scholar 

  • Springer S, Chen E, Duden R, Marzioch M, Rowley A, Hamamoto S, Merchant S, Schekman R (2000) The p24 proteins are not essential for vesicular transport in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 4034–4039

    Article  PubMed  CAS  Google Scholar 

  • Springer S, Spang A, Schekman R (1999) A primer on vesicle budding. Cell 97: 145–148

    Article  PubMed  CAS  Google Scholar 

  • Stamnes MA, Craighead MW, HoeMH, Lampen N, Geromanos S, Tempst P, Rothman JE (1995) An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding [published erratum appears in Proc Natl Acad Sci USA 1995 Nov 7; 92(23): 10816]. Proc Natl Acad Sci USA 92: 8011–8015

    Article  PubMed  CAS  Google Scholar 

  • Stenbeck G, Harter C, Brecht A, Herrmann D, Lottspeich F, Oric L, Wieland FT (1993) Beta prime COP, a novel subunit of coatomer. EMBO J 12: 2841–2845

    PubMed  CAS  Google Scholar 

  • Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB, Rothman JE (1993) Hydrolysisof bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol 123: 1365–1371

    Article  PubMed  CAS  Google Scholar 

  • Teasdale RD, Jackson MR (1996) Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu Rev Cell Dev Biol 12:27–54

    Article  PubMed  CAS  Google Scholar 

  • Tisdale EJ, Plutner H, Matteson J, Balch WE (1997) p53/58 binds COPI and is required for selective transport through the early secretory pathway. J Cell Biol 137: 581–593

    Article  PubMed  CAS  Google Scholar 

  • Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, et al. (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6: 1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Waters MG, Serafini T, Rothman JE (1991) ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349: 248–251

    Article  PubMed  CAS  Google Scholar 

  • Wegmann D, Hess P, Baier C, Wieland FT, Reinhard C (2004) Novel isotypic gamma/ zeta subunits reveal three coatomer complexes in mammals. Mol Cell Biol 24: 1070–1080

    Article  PubMed  CAS  Google Scholar 

  • Weigert R, Silletta MG, Spano S, Turacchio G, Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M, et al. (1999) CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402: 429–433

    Article  PubMed  CAS  Google Scholar 

  • Wessels E, Duijsings D, Niu TK, Neumann S, Oorschot VM, De Lange F, Lanke KH, Klumperman J, Henke A, Jackson CL, et al. (2006) COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. Dev Cell 11: 191–201

    Article  PubMed  CAS  Google Scholar 

  • White J, Johannes L, Mallard F,Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147: 743–760

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Lee S, Spanò S, Gad H, Zhang L, Nie Z, Bonazzi M, Corda D, Luini A, Hsu V (2005) A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBOJ 24:4133–4143

    Article  CAS  Google Scholar 

  • Yang JS, Lee SY, Gao M, Bourgoin S, Randazzo PA, Premont RT, Hsu VW(2002) ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J Cell Biol 159:69–78

    Article  PubMed  CAS  Google Scholar 

  • Yang JS, Zhang L, Lee SY, Gad H, Luini A, Hsu VW (2006) Key components of the fission machinery are interchangeable. Nat Cell Biol 8: 1376–1382

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, Michelsen K, Schwappach B (2003) 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr Biol 13: 638–646

    Article  PubMed  CAS  Google Scholar 

  • Zerangue N, Malan MJ, Fried SR, Dazin PF, Jan YN, Jan LY, Schwappach B (2001) Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proc Natl Acad Sci USA 98: 2431–2436

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hsu, V.W., Yang, J.S., Lee, S.Y. (2008). COPI: mechanisms and transport roles. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_7

Download citation

Publish with us

Policies and ethics