Skip to main content

Apoptosis inhibition in T cells triggers the expression of proinflammatory cytokines — implications for the CNS

  • Chapter

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

Stimulation of death receptors such as CD95 or TNF-R1 results in rapid onset of apoptosis. Here we show that inhibition of death receptor-induced apoptosis by the broad range caspase inhibitor ZVAD causes a switch from apoptotic to proinflammatory signaling. In previous studies we have reported that caspase inhibitors induce expression of various proin-flammatory cytokines in CD95-stimulated primary T cells, such as TNF-α, IFN-γ and GM-CSF. In this study we provide further evidence for the proinflammatory activity of CD95. Stimulation of CD95 by agonistic antibodies (7C11) resulted in expression of IL-2 in primary T cells, which was further enhanced when caspase activity was blocked by ZVAD. Moreover, CD95 triggered expression of IL-4 and IL-8 when caspase activity was inhibited, but not in the absence of ZVAD. Our findings are of significant importance for the CNS as changes in the cytokine pattern in the periphery affects the entry of various immune cells into the brain. Moreover, invading activated T cells can also directly influence the cytokine profile within the brain, triggering signaling cascades that eventually lead to neuronal cell death. The use of caspase inhibitors to prevent apoptotic cell death should be carefully evaluated in the management of systemic and CNS diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araujo DM, Cotman CW (1993) Trophic effects of interleukin-4,-7 and-8 on hippocampal neuronal cultures: potential involvement of glialderived factors. Brain Res 600: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Bantel H, Bruning T, Schulze-Osthoff K (1998) Activation of caspases by death receptors. Eur Cytokine Netw 9: 681–684

    PubMed  CAS  Google Scholar 

  • Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25: 1–54

    Article  PubMed  CAS  Google Scholar 

  • Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11: 372–377

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Rauschka H, Lassmann H (2001) Inflammation in the nervous system: the human perspective. Glia 36: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Beck RD Jr, King MA, Ha GK, Cushman JD, Huang Z, Petitto JM (2005a) IL-2 deficiency results in altered septal and hippocampal cytoarchitecture: relation to development and neurotrophins. J Neuroimmunol 160: 146–153

    Article  PubMed  CAS  Google Scholar 

  • Beck RD Jr, Wasserfall C, Ha GK, Cushman JD, Huang Z, Atkinson MA, Petitto JM (2005b) Changes in hippocampal IL-15, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Res 1041: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Beloosesky Y, Salman H, Bergman M, Bessler H, Djaldetti M (2002) Cytokine levels and phagocytic activity in patients with Alzheimer’s disease. Gerontology 48: 128–132

    Article  PubMed  Google Scholar 

  • Bilsland J, Roy S, Xanthoudakis S, Nicholson DW, Han Y, Grimm E, Hefti F, Harper SJ (2002) Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons. J Neurosci 22: 2637–2649

    PubMed  CAS  Google Scholar 

  • Brodie C, Goldreich N, Haiman T, Kazimirsky G (1998) Functional IL-4 receptors on mouse astrocytes: IL-4 inhibits astrocyte activation and induces NGF secretion. J Neuroimmunol 81: 20–30

    Article  PubMed  CAS  Google Scholar 

  • Chuang D, Power SE, Dunbar PR, Hill AG (2005) Central nervous system interleukin-8 production following neck of femur fracture. ANZ J Surg 75: 813–816

    Article  PubMed  Google Scholar 

  • Chun TW, Fauci AS (1999) Latent reservoirs of HIV: obstacles to the eradication of virus. Proc Natl Acad Sci USA 96: 10958–10961

    Article  PubMed  CAS  Google Scholar 

  • Delgado AV, McManus AT, Chambers JP (2003) Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37: 355–361

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, MacGibbon GA, Lawlor P, Butterworth N, Connor B, Henderson C, Walton M, Woodgate A, Hughes P, Faull RL (1997) Apoptosis, neurotrophic factors and neurodegeneration. Rev Neurosci 8: 223–265

    PubMed  CAS  Google Scholar 

  • Eberhardt O, Coelln RV, Kugler S, Lindenau J, Rathke-Hartlieb S, Gerhardt E, Haid S, Isenmann S, Gravel C, Srinivasan A, Bahr M, Weller M, Dichgans J, Schulz JB (2000) Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 20: 9126–9134

    PubMed  CAS  Google Scholar 

  • Ehrlich LC, Hu S, Sheng WS, Sutton RL, Rockswold GL, Peterson PK, Chao CC (1998) Cytokine regulation of human microglial cell IL-8 production. J Immunol 160: 1944–1948

    PubMed  CAS  Google Scholar 

  • Fiskum G, Starkov A, Polster BM, Chinopoulos C (2003) Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann NY Acad Sci 991: 111–119

    Article  PubMed  CAS  Google Scholar 

  • Flugel A, Bradl M (2001) New tools to trace populations of inflammatory cells in the CNS. Glia 36: 125–136

    Article  PubMed  CAS  Google Scholar 

  • Flugel A, Schwaiger FW, Neumann H, Medana I, Willem M, Wekerle H, Kreutzberg GW, Graeber MB (2000) Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol 10: 353–364

    Article  PubMed  CAS  Google Scholar 

  • Ford AL, Foulcher E, Lemckert FA, Sedgwick JD (1996) Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med 184: 1737–1745

    Article  PubMed  CAS  Google Scholar 

  • Frigerio S, Silei V, Ciusani E, Massa G, Lauro GM, Salmaggi A (2000) Modulation of fas-ligand (Fas-L) on human microglial cells: an in vitro study. J Neuroimmunol 105: 109–114

    Article  PubMed  CAS  Google Scholar 

  • Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M (2002) Multiple control of interleukin-8 gene expression. J Leukoc Biol 72: 847–855

    PubMed  CAS  Google Scholar 

  • Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J, Parker J, Hadley TJ, Peiper SC (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol 158: 2882–2890

    PubMed  CAS  Google Scholar 

  • Hulshof S, Montagne L, De Groot CJ, Van Der Valk P (2002) Cellular localization and expression patterns of interleukin-10, interleukin-4, and their receptors in multiple sclerosis lesions. Glia 38: 24–35

    Article  PubMed  Google Scholar 

  • Khoury SJ, Hancock WW, Weiner HL (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 176: 1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Magnus T, Chan A, Savill J, Toyka KV, Gold R (2002) Phagocytotic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. J Neuroimmunol 130: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MBH (2003) Neuroprotective strategies in Parkinson’s disease. An update on progress. CNS Drugs 17: 729–762

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev 48: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95: 14500–14505

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm [Suppl]: 277–290

    Google Scholar 

  • Neumann H, Wekerle H (1998) Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol 57: 1–9

    PubMed  CAS  Google Scholar 

  • Nguyen KB, Pender MP (1998) Phagocytosis of apoptotic lymphocytes by oligodendrocytes in experimental autoimmune encephalomyelitis. Acta Neuropathol (Berl) 95: 40–46

    Article  PubMed  CAS  Google Scholar 

  • Okuda Y, Sakoda S, Fujimura H, Yanagihara T (2000) The effect of apoptosis inhibitors on experimental autoimmune encephalomyelitis: apoptosis as a regulatory factor. Biochem Biophys Res Commun 267: 826–830

    Article  PubMed  CAS  Google Scholar 

  • Pender MP, Rist MJ (2001) Apoptosis of inflammatory cells in immune control of the nervous system: role of glia. Glia 36: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Plata-Salaman CR, Borkoski JP (1993) Interleukin-8 modulates feeding by direct action in the central nervous system. Am J Physiol 265: 877–882

    Google Scholar 

  • Pouly S, Antel JP, Ladiwala U, Nalbantoglu J, Becher B (2000) Mechanisms of tissue injury in multiple sclerosis: opportunities for neuroprotective therapy. J Neural Transm [Suppl]: 193–203

    Google Scholar 

  • Puma C, Danik M, Quirion R, Ramon F, Williams S (2001) The chemokine interleukin-8 acutely reduces Ca(2+) currents in identified cholinergic septal neurons expressing CXCR1 and CXCR2 receptor mRNAs. J Neurochem 78: 960–971

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17: 2941–2953

    PubMed  CAS  Google Scholar 

  • Rescigno M, Piguet V, Valzasina B, Lens S, Zubler R, French L, Kindler V, Tschopp J, Ricciardi-Castagnoli P (2000) Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 192: 1661–1668

    Article  PubMed  CAS  Google Scholar 

  • Rideout HJ, Stefanis L (2001) Caspase inhibition: a potential therapeutic strategy in neurological diseases. Histol Histopathol 16: 895–908

    PubMed  CAS  Google Scholar 

  • Scheller C, Jassoy C (2001) Syncytium formation amplifies apoptotic signals: a new view on apoptosis in HIV infection in vitro. Virology 282: 48–55

    Article  PubMed  CAS  Google Scholar 

  • Scheller C, Knoferle J, Ullrich A, Prottengeier J, Racek T, Sopper S, Jassoy C, Rethwilm A, Koutsilieri E (2005) Caspase inhibition in apoptotic T cells triggers necrotic cell death depending on the cell type and the proapoptotic stimulus. J Cell Biochem: In press

    Google Scholar 

  • Scheller C, Sopper S, Chen P, Flory E, Koutsilieri E, Racek T, Ludwig S, ter Meulen V, Jassoy C (2002a) Caspase inhibition activates HIV in latently infected cells. Role of tumor necrosis factor receptor 1 and CD95. J Biol Chem 277: 15459–15464

    Article  PubMed  CAS  Google Scholar 

  • Scheller C, Sopper S, Ehrhardt C, Flory E, Chen P, Koutsilieri E, Ludwig S, ter Meulen V, Jassoy C (2002b) Caspase inhibitors induce a switch from apoptotic to proinflammatory signaling in CD95-stimulated T lymphocytes. Eur J Immunol 32: 2471–2480

    Article  PubMed  CAS  Google Scholar 

  • Scheller C, Sopper S, Koutsilieri E, Ludwig S, Ter Meulen V, Jassoy C (2003) Caspase inhibitors as a supplement in immune activation therapies to achieve eradication of HIV in its latent reservoirs. Ann NY Acad Sci 1010: 209–212

    Article  PubMed  CAS  Google Scholar 

  • Schroeter M, Jander S (2005) T-cell cytokines in injury-induced neural damage and repair. NeuroMolecular Medicine: In press

    Google Scholar 

  • Vass K, Lassmann H (1990) Intrathecal application of interferon gamma. Progressive appearance of MHC antigens within the rat nervous system. Am J Pathol 137: 789–800

    PubMed  CAS  Google Scholar 

  • Wellington CL, Hayden MR (2000) Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin Genet 57: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Wirjatijasa F, Dehghani F, Blaheta RA, Korf HW, Hailer NP (2002) Interleukin-4, interleukin-10, and interleukin-1-receptor antagonist but not transforming growth factor-beta induce ramification and reduce adhesion molecule expression of rat microglial cells. J Neurosci Res 68: 579–587

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9: 271–277

    Article  Google Scholar 

  • Xia M, Qin S, McNamara M, Mackay C, Hyman BT (1997) Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. Am J Pathol 150: 1267–1274

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Scheller, C., Riederer, P., Gerlach, M., Koutsilieri, E. (2006). Apoptosis inhibition in T cells triggers the expression of proinflammatory cytokines — implications for the CNS. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics