Skip to main content

Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain

  • Chapter
Book cover Oxidative Stress and Neuroprotection

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

Because of the multiple biochemical pathways that require iron, iron deficiency can impact brain metabolism in many ways. The goal of this study was to identify a molecular footprint associated with ongoing versus long term consequences of iron deficiency using microarray analysis. Rats were born to iron-deficient mothers, and were analyzed at two different ages: 21 days, while weaning and iron-deficient; and six months, after a five month iron-sufficient recovery period. Overall, the data indicate that ongoing iron deficiency impacts multiple pathways, whereas the long term consequences of iron deficiency on gene expression are more limited. These data suggest that the gene array profiles obtained at postnatal day 21 reflect a brain under development in a metabolically compromised setting that given appropriate intervention is mostly correctable. There are, however, long term consequences to the developmental iron deficiency that could underlie the neurological deficits reported for iron deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldred AR, Dickson PW, et al. (1987) Distribution of transferrin synthesis in brain and other tissues in the rat. J Biol Chem 262: 5293–5297

    PubMed  CAS  Google Scholar 

  • Anderson GW, Schoonover CM, et al. (2003) Control of thyroid hormone action in the developing rat brain. Thyroid 13: 1039–1056

    PubMed  CAS  Google Scholar 

  • Andrews NC (2000) Iron metabolism: iron deficiency and iron overload. Annu Rev Genomics Hum Genet 1: 75–98

    PubMed  CAS  Google Scholar 

  • Aniello F, Couchie D, et al. (1991) Regulation of five tubulin isotypes by thyroid hormone during brain development. J Neurochem 57: 1781–1786

    PubMed  CAS  Google Scholar 

  • Balazs R (1971) Biochemical effects of thyroid hormones in the developing brain. UCLA Forum Med Sci 14: 273–320

    PubMed  CAS  Google Scholar 

  • Balazs R, Brooksbank BW, et al. (1969) The effect of thyroid deficiency on myelination in the rat brain. J Physiol 201: 28–29

    Google Scholar 

  • Bartlett WP, Li X-S, et al. (1991) Expression of transferrin mRNA in the CNS of normal and jimpy mice. J Neurochem 57: 318–322

    PubMed  CAS  Google Scholar 

  • Baud O, Fayol L, et al. (2003) Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. J Comp Neurol 465: 445–454

    PubMed  CAS  Google Scholar 

  • Beard J, Tobin B, et al. (1989) Evidence for thyroid hormone deficiency in iron-deficient anemic rats. J Nutr 119: 772–778

    PubMed  CAS  Google Scholar 

  • Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23: 41–58

    PubMed  CAS  Google Scholar 

  • Beard JL, Hendricks MK, et al. (2005) Maternal iron deficiency anemia affects postpartum emotions and cognition. J Nutr 135: 267–272

    PubMed  CAS  Google Scholar 

  • Beard JL, Wiesinger JA, et al. (2003) Pre-and postweaning iron deficiency alters myelination in Sprague-Dawley rats. Dev Neurosci 25: 308–315

    PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Series B: 289–300

    Google Scholar 

  • Bolstad B, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193

    PubMed  CAS  Google Scholar 

  • Burhans MS, Dailey C, et al. (2005) Iron deficiency: differential effects on monoamine transporters. Nutr Neurosci 8: 31–38

    PubMed  CAS  Google Scholar 

  • Cheepsunthorn P, Radov L, et al. (2001) Characterization of a novel brain-derived microglial cell line isolated from neonatal rat brain. Glia 35: 53–62

    PubMed  CAS  Google Scholar 

  • Chen Q, Connor JR, et al. (1995) Brain iron, transferrin and ferritin concentrations are altered in developing iron-deficient rats. J Nutr 125: 1529–1535

    PubMed  CAS  Google Scholar 

  • Cohen RI, Chandross KJ (2000) Fibroblast growth factor-9 modulates the expression of myelin related proteins and multiple fibroblast growth factor receptors in developing oligodendrocytes. J Neurosci Res 61: 273–287

    PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL, et al. (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31: 75–83

    PubMed  CAS  Google Scholar 

  • Crowe A, Morgan EH (1992) Iron and transferrin uptake by brain and cerebrospinal fluid in the rat. Brain Res 592: 8–16

    PubMed  CAS  Google Scholar 

  • Dallman PR, Siimes MA, et al. (1975) Brain iron: persistent deficiency following short term iron deprivation in the young rat. Br J Heamatol 31: 209–215

    CAS  Google Scholar 

  • de Deungria M, Rao R, et al. (2000) Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr Res 48: 169–176

    PubMed  CAS  Google Scholar 

  • Erikson K, Jones BC, Beard JL (2000) Dopamine reuptake is altered in iron deficiency anemia. J Nutr 130: 2831–2837

    PubMed  CAS  Google Scholar 

  • Erikson KM, Pinero DJ, et al. (1997) Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats. J Nutr 127: 2030–2038

    PubMed  CAS  Google Scholar 

  • Erikson KM, Syversen T, et al. (2004) Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J Nutr Biochem 15: 335–341

    PubMed  CAS  Google Scholar 

  • Espinosa de los Monteros A, Kumar S, et al. (1990) Transferrin gene expression and secretion by rat brain cells in vitro. J Neurosci Res 25: 576–580

    PubMed  CAS  Google Scholar 

  • Estivill-Torrus G, Pearson H, et al. (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129: 455–466

    PubMed  CAS  Google Scholar 

  • Faivre C, Legrand C, Rabie A (1984) In Purkinje cell dendrites of the young rat, thyroid hormone controls the resistance of microtubules to fixation at low temperature. Int J Dev Neurosci 2: 427–436

    CAS  Google Scholar 

  • Felt BT, Lozoff B (1996) Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development. J Nutr 126: 693–701

    PubMed  CAS  Google Scholar 

  • Fernandez-Valle C, Gorman D, et al. (1997) Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J Neurosci 17: 241–250

    PubMed  CAS  Google Scholar 

  • Fleming RE, Migas MC, et al. (2000) Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci USA 97: 2214–2219

    PubMed  CAS  Google Scholar 

  • Fortun J, Li J, et al. (2005) Impaired proteasome activity and accumulation of ubiquitinated substrates in a hereditary neuropathy model. J Neurochem 92: 1531–1541

    PubMed  CAS  Google Scholar 

  • Galloway PG, Mulvihill P, et al. (1990) Immunochemical demonstration of tropomyosin in the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 137: 291–300

    PubMed  CAS  Google Scholar 

  • Galloway PG, Perry G (1991) Tropomyosin distinguishes Lewy bodies of Parkinson disease from other neurofibrillary pathology. Brain Res 541: 347–349

    PubMed  CAS  Google Scholar 

  • Gao B, Hagenbuch B, et al. (2000) Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 294: 73–79

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, et al. (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur J Pharmacol 208: 273–286

    PubMed  CAS  Google Scholar 

  • Han J, Day JR, et al. (2003) Gene expression of transferrin and transferrin receptor in brains of control vs. iron-deficient rats. Nutr Neurosci 6: 1–10

    PubMed  CAS  Google Scholar 

  • Hediger MA, Romero MF, et al. (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins introduction. Pflugers Arch 447: 465–468

    PubMed  CAS  Google Scholar 

  • Holz A, Schaeren-Wiemers N, et al. (1996) Molecular and developmental characterization of novel cDNAs of the myelin-associated/oligodendrocytic basic protein. J Neurosci 16: 467–477

    PubMed  CAS  Google Scholar 

  • Irizarry R, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264

    PubMed  Google Scholar 

  • Jellinger K, Paulus W, et al. (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 2: 327–340

    PubMed  CAS  Google Scholar 

  • Jones BC, Reed CL, et al. (2003) Quantitative genetic analysis of ventral midbrain and liver iron in BXD recombinant inbred mice. Nutr Neurosci 6: 369–377

    PubMed  CAS  Google Scholar 

  • Jorgenson LA, Wobken JD, et al. (2003) Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci 25: 412–420

    PubMed  CAS  Google Scholar 

  • Kabashi E, Agar JN, et al. (2004) Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J Neurochem 89: 1325–1335

    PubMed  CAS  Google Scholar 

  • Kakunaga S, Ikeda W, et al. (2005) Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J Cell Sci 118: 1267–1277

    PubMed  CAS  Google Scholar 

  • Kakyo M, Sakagami H, et al. (1999) Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS Lett 445: 343–346

    PubMed  CAS  Google Scholar 

  • Kaladhar M, Narasinga Rao BS (1982) Effects of iron deficiency on serotonin uptake in vitro by rat brain synaptic vesicles. J Neurochem 38: 1576–1581

    PubMed  CAS  Google Scholar 

  • Kalivendi SV, Kotamraju S, et al. (2003) 1-Methyl-4-phenylpyridinium (MPPt)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J 371: 151–164

    PubMed  CAS  Google Scholar 

  • Khanna S, Roy S, et al. (2003) Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J Biol Chem 278: 43508–43515

    PubMed  CAS  Google Scholar 

  • Kwak MK, Wakabayashi N, et al. (2003) Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 23: 8786–8794

    PubMed  CAS  Google Scholar 

  • Kwik-Uribe CL, Gietzen D, et al. (2000) Chronicmarginal iron intakes during early development in mice result in persistent changes in dopamine metabolism and myelin composition. J Nutr 130: 2821–2830

    PubMed  CAS  Google Scholar 

  • Kwik-Uribe CL, Golub MS, et al. (2000) Chronic marginal iron intakes during early development in mice alter brain iron concentrations and behavior despite postnatal iron supplementation. J Nutr 130: 2040–2048

    PubMed  CAS  Google Scholar 

  • Larkin E, Rao GA (1990) Importance of fetal and neonatal iron: Adequacy for normal development of central nervouse system. Brain, Behavior and Iron in the Infant Diet. J. Dobbing. London, UK, Springer-Verlag: 43–63

    Google Scholar 

  • LeVine SM, Goldman JE (1988) Spatial and temporal patterns of oligodendrocyte differentiation in rat cerebrum and cerebellum. J Comp Neurol 277: 441–455

    PubMed  CAS  Google Scholar 

  • LeVine SM, Macklin WB (1990) Iron-enriched oligodendrocytes: a reexamination of their spatial distribution. J Neurosci Res 26: 508–512

    PubMed  CAS  Google Scholar 

  • Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98: 31–36

    PubMed  CAS  Google Scholar 

  • Li C, Wong WH (2003) DNA-Chip Analyzer (dChip) The analysis of gene expression data: methods and software. G. Parmigiani, Garrett, ES, Irizarry, R and Zeger, SL., Springer

    Google Scholar 

  • Li N, Hartley DP, et al. (2002) Tissue expression, ontogeny, and inducibility of rat organic anion transporting polypeptide 4. J Pharmacol Exp Ther 301: 551–560

    PubMed  CAS  Google Scholar 

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5: 331–342

    PubMed  CAS  Google Scholar 

  • Lozoff B, Jimenez E, et al. (2000) Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105: E51

    PubMed  CAS  Google Scholar 

  • MacInnis BL, Campenot RB (2005) Regulation of Wallerian degeneration and nerve growth factor withdrawal-induced pruning of axons of sympathetic neurons by the proteasome and the MEK/Erk pathway. Mol Cell Neurosci 28: 430–439

    PubMed  CAS  Google Scholar 

  • Matus A (2000) Actin-based plasticity in dendritic spines. Science 290: 754–758

    PubMed  CAS  Google Scholar 

  • Mizuno T, Yamashita T, et al. (2004) Chimaerins act downstream from neurotrophins in overcoming the inhibition of neurite outgrowth produced by myelin-associated glycoprotein. J Neurochem 91: 395–403

    PubMed  CAS  Google Scholar 

  • Moos T, Oates PS, et al. (1999) Iron-independent neuronal expression of transferrin receptor mRNA in the rat. Brain Res Mol Brain Res 72: 231–234

    PubMed  CAS  Google Scholar 

  • Morath DJ, Mayer-Proschel M (2002) Iron deficiency during embryogenesis and consequences for oligodendrocyte generation in vivo. Dev Neurosci 24: 197–207

    PubMed  CAS  Google Scholar 

  • Mortusewicz O, Schermelleh L, et al. (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci USA

    Google Scholar 

  • Noe B, Hagenbuch B, et al. (1997) Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc Natl Acad Sci USA 94: 10346–10350

    PubMed  CAS  Google Scholar 

  • Ortiz E, Pasquini JM, et al. (2004) Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 77: 681–689

    PubMed  CAS  Google Scholar 

  • Palti H, Meijer A, et al. (1985) Learning achievement and behavior at school of anemic and non-anemic infants. Early Hum Dev 10: 217–223

    PubMed  CAS  Google Scholar 

  • Pedraza L, Fidler L, et al. (1997) The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron 18: 579–589

    PubMed  CAS  Google Scholar 

  • Perez EM, Hendricks MK, et al. (2005) Mother-infant interactions and infant development are altered by maternal iron deficiency anemia. J Nutr 135: 850–855

    PubMed  CAS  Google Scholar 

  • Pham-Dinh D, Mattei MG, et al. (1993) Myelin/oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex. Proc Natl Acad Sci USA 90: 7990–7994

    PubMed  CAS  Google Scholar 

  • Pinero DJ, Hu J, et al. (2000) Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains. Cell Mol Biol (Noisy-le-grand) 46: 761–776

    CAS  Google Scholar 

  • Pinero DJ, Li NQ, et al. (2000) Variations in dietary iron alter brain iron metabolism in developing rats. J Nutr 130: 254–263

    PubMed  CAS  Google Scholar 

  • Rao R, de Ungria M, et al. (1999) Perinatal brain iron deficiency increases the vulnerability of rat hippocampus to hypoxic ischemic insult. J Nutr 129: 199–206

    PubMed  CAS  Google Scholar 

  • Rao R, Tkac I, et al. (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 133: 3215–3221

    PubMed  CAS  Google Scholar 

  • Reichel C, Gao B, et al. (1999) Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology 117: 688–695

    PubMed  CAS  Google Scholar 

  • Roskams AJ, Connor JR (1992) Transferrin receptor expression in myelin deficient (md) rats. J Neurosci Res 31: 421–427

    PubMed  CAS  Google Scholar 

  • Rosman NP, Malone MJ, et al. (1972) The effect of thyroid deficiency on myelination of brain. A morphological and biochemical study. Neurology 22: 99–106

    PubMed  CAS  Google Scholar 

  • Schaeren-Wiemers N, Bonnet A, et al. (2004) The raft-associated protein MAL is required for maintenance of proper axon-glia interactions in the central nervous system. J Cell Biol 166: 731–742

    PubMed  CAS  Google Scholar 

  • Schneider A, Montague P, et al. (1992) Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature 358: 758–761

    PubMed  CAS  Google Scholar 

  • Shah GN, Li J, et al. (1997) Cloning and characterization of a complementary DNA for a thyroid hormone-responsive protein in mature rat cerebral tissue. Biochem J 327: 617–623

    PubMed  CAS  Google Scholar 

  • Shang T, Kotamraju S, et al. (2004) 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferring receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide. J Biol Chem 279: 19099–19112

    PubMed  CAS  Google Scholar 

  • Shiota C, Ikenaka K, et al. (1991) Developmental expression of myelin protein genes in dysmyelinating mutant mice: analysis by nuclear runoff transcription assay, in situ hybridization, and immunohistochemistry. J Neurochem 56: 818–826

    PubMed  CAS  Google Scholar 

  • Siddappa AJ, Rao RB, et al. (2003) Iron deficiency alters iron regulatory protein and iron transport protein expression in the perinatal rat brain. Pediatr Res 53: 800–807

    PubMed  CAS  Google Scholar 

  • Stamm S, Casper D, et al. (1993) Brain-specific tropomyosins TMBr-1 and TMBr-3 have distinct patterns of expression during development and in adult brain. Proc Natl Acad Sci USA 90: 9857–9861

    PubMed  CAS  Google Scholar 

  • Steele-Perkins G, Plachez C, et al. (2005) The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 25: 685–698

    PubMed  CAS  Google Scholar 

  • Takahashi H, Sekino Y, et al. (2003) Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis. J Neurosci 23: 6586–6595

    PubMed  CAS  Google Scholar 

  • Taneja V, Mishra K, et al. (1986) Effect of early iron deficiency in rat on the gamma-aminobutyric acid shunt in brain. J Neurochem 46: 1670–1674

    PubMed  CAS  Google Scholar 

  • Tang YP, Ma YL, et al. (2001) mRNA differential display identification of thyroid hormone-responsive protein (THRP) gene in association with early phase of long-term potentiation. Hippocampus 11: 637–646

    PubMed  CAS  Google Scholar 

  • Thompson K, Menzies S, et al. (2003) Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J Neurosci Res 71: 46–63

    PubMed  CAS  Google Scholar 

  • Tsung A, Sahai R, et al. (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201: 1135–1143

    PubMed  CAS  Google Scholar 

  • Tukey J (1977) Exploratory Data Analysis. Reading, MA, Addison-Wesley

    Google Scholar 

  • Tusher VG, Tibshirani R, et al. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121

    PubMed  CAS  Google Scholar 

  • Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285: E1127–E1134

    PubMed  CAS  Google Scholar 

  • Wang W, Stock RE, et al. (2004) A role for nuclear factor I in the intrinsic control of cerebellar granule neuron gene expression. J Biol Chem 279: 53491–53497

    PubMed  CAS  Google Scholar 

  • Weinberg J, Levine S, et al. (1979) Long-term consequences of early iron deficiency in the rat. Pharmacol Biochem Behav 11: 631–638

    PubMed  CAS  Google Scholar 

  • Xu ZQ, Zheng K, et al. (2005) Electrophysiological studies on galanin effects in brain — progress during the last six years. Neuropeptides 39: 267–273

    Google Scholar 

  • Yao I, Hata Y, et al. (1999) MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. J Biol Chem 274: 11889–11896

    PubMed  CAS  Google Scholar 

  • Youdim MB, Ben-Shachar D (1987) Minimal brain damage induced by early iron deficiency: modified dopaminergic neurotransmission. Isr J Med Sci 23: 19–25

    PubMed  CAS  Google Scholar 

  • Youdim MB, Ben-Shachar D, et al. (1989) Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior. Am J Clin Nutr 50[Suppl 3]: 607–615; discussion 615–617

    PubMed  CAS  Google Scholar 

  • Youdim MB, Yehuda S (2000) The neurochemical basis of cognitive deficits induced by brain iron deficiency: involvement of dopamineopiate system. Cell Mol Biol (Noisy-le-grand) 46: 491–500

    CAS  Google Scholar 

  • Youdim MB, Yehuda S, et al. (1981) Iron deficiency-induced circadian rhythm reversal of dopaminergic-mediated behaviours and thermoregulation in rats. Eur J Pharmacol 74: 295–301

    PubMed  CAS  Google Scholar 

  • Zambrzycka A, Kacprzak M (2003) Apolipoprotein E4 and A beta peptide 1–42 inhibit polyphosphoinositide biosynthesis in rat brain cortex. Pol J Pharmacol 55: 911–913

    PubMed  CAS  Google Scholar 

  • Zarghooni M, Soosaipillai A, et al. (2002) Decreased concentration of human kallikrein 6 in brain extracts of Alzheimer’s disease patients. Clin Biochem 35: 225–231

    PubMed  CAS  Google Scholar 

  • Zhang EY, Knipp GT, et al. (2002) Structural biology and function of solute transporters: implications for identifying and designing substrates. Drug Metab Rev 34: 709–750

    PubMed  CAS  Google Scholar 

  • Zhang S, Grosse F (1994) Nuclear DNA helicase II unwinds both DNA and RNA. Biochemistry 33: 3906–3912

    PubMed  CAS  Google Scholar 

  • Zimmermann MB, Kohrle J (2002) The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid 12: 867–878

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Clardy, S.L. et al. (2006). Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_19

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics