Skip to main content

Altering the properties of the blood-brain barrier: disruption and permeabilization

  • Chapter
Book cover Peptide Transport and Delivery into the Central Nervous System

Part of the book series: Progress in Drug Research ((PDR,volume 61))

  • 465 Accesses

Abstract

By way of its intrinsic structural and physiological properties, the blood-brain barrier (BBB) represents a formidable obstacle to the delivery of drug to the central nervous system. The treatments of many diseases affecting the central nervous system is thereby complicated by the aspect of delivery, that is, insuring that the therapeutic molecule will reach the target cell in sufficient concentration, and in a suitable timing for the treatment to be effective. Although many different etiologic conditions will be affected by this delivery impediment, in no other condition has it been as extensively documented as in malignant brain tumors. Brain tumor is the prototypical situation through which one can best exemplify the problematic of delivery across the blood-brain barrier. We will therefore frequently refer to this particular problematic, acknowledging the fact that a lot of research endeavour in this field was undertaken as alternate strategies in the treatment of brain tumors. However, by no means will we imply that these strategies should be restricted to the treatment of cerebral malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BAT:

brain adjacent to tumor

BBB:

blood-brain barrier

BBBD:

blood brain barrier disruption

BCNU:

1,3-bis(2-chloroethyl)-1-nitrosourea

BDT:

brain distant to tumor

CNS:

central nervous system

CSF:

cerebrospinal fluid

CT:

computed tomography

ICP:

intracranial pressure

i.v.:

intravenous

LH:

left hemisphere

MRI:

magnetic resonance imaging

PET:

positron emission tomographty

SPECT:

single photon emission computed tomography

References

  1. Fine HA, Dear KBG, Loeffler JS, Black PM, Canellos GP (1993) Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71: 2585–2597

    Article  PubMed  CAS  Google Scholar 

  2. Holsi P, Sappino AP, de Tribolet N, Dietrich PY (1998) Malignant glioma: should chemotherapy be overthrown by experimental treatments? Ann Oncol 6: 589–600

    Google Scholar 

  3. Fortin D, Neuwelt EA (2002) Therapeutic manipulation of the blood-brain barrier. Neurobaseneurosurgery. 1st ed. Medlink CD-ROM, Medlink Corporation.

    Google Scholar 

  4. Zlokovic BV, Apuzzo ML (1997) Cellular and molecular neurosurgery: pathways from concept to reality—part I: target disorders and concept approaches to gene therapy of the central nervous system. Neurosurgery 40: 789–80

    Article  PubMed  CAS  Google Scholar 

  5. Kroll RA, Neuwelt EA (1998) Outwitting the blood-brain barrier for therapeutic purposes: Osmotic opening and other means. Neurosurgery 42: 1083–1100

    Article  PubMed  CAS  Google Scholar 

  6. Rapoport SI, Hori M, Klatzo I (1972) Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223: 323–331

    PubMed  CAS  Google Scholar 

  7. EA Neuwelt (ed): Implications of the Blood-Brain Barrier and Its Manipulation. New York, Plenum Press, 1989, vol 1 and 2.

    Google Scholar 

  8. Pardridge WM (1991) Advances in cell biology of blood-brain barrier transport. Semin Cell Biol 2: 419–426

    PubMed  CAS  Google Scholar 

  9. Pardridge WM (2002) Targeting neurotherapeutic agents through the blood-brain barrier. Arch Neurol 59: 35–40

    Article  PubMed  Google Scholar 

  10. Pardridge WM (1997) Drug delivery to the brain. J Cereb Blood Flow Metab 17: 713–731

    Article  PubMed  CAS  Google Scholar 

  11. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91: 2076–2080

    Article  PubMed  CAS  Google Scholar 

  12. Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH (1995) Convectionenhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurgery 82: 1021–1029

    Article  CAS  Google Scholar 

  13. Rainov NG, Kramm CM (2001) Vector delivery methods and targeting strategies for gene therapy of brain tumors. Curr Gene Ther 1: 367–383

    Article  PubMed  CAS  Google Scholar 

  14. Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Neuwelt EA (1996) Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery 38: 746–752

    Article  PubMed  CAS  Google Scholar 

  15. Muldoon LL, Nilaver G, Kroll RA, Pagel MA, Breakefiled XO, Chioca EA, Davidson BL, Weissleder R, Neuwelt EA (1995) Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain. Am J Pathol 147: 1840–1851

    PubMed  CAS  Google Scholar 

  16. Bartus RT, Snodgrass P, Dean RL, Kordower JH, Emerich DF (2000) Evidence that Cereport’s ability to increase permeability of rat gliomas is dependent upon extent of tumor growth: implications for treating newly emerging tumor colonies. Exp Neurol 161: 234–44

    Article  PubMed  CAS  Google Scholar 

  17. Brem H, Ewend MG, Piantadosi S, Greenhoot J, Burger PC, Sisti M (1995) The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation in the treatment of newly diagnosed malignant gliomas: Phase I trial. J Neurooncol 26: 111–123

    Article  PubMed  CAS  Google Scholar 

  18. Wang PP, Frazier J, Brem H (2002) Local drug delivery to the brain. Adv Drug Deliv Rev 54: 987–1013

    Article  PubMed  CAS  Google Scholar 

  19. Bradbury MWB (1986) Appraisal of the role of endothelial cells and glia in barrier breakdown. In: AJ Suckling, MG Rumsby, MWB Bradbury (eds): The Blood-Brain Barrier in Health and Disease. Ellis Horwood, Chichester, 128–129

    Google Scholar 

  20. Selman WR, Lust WD, Ratcheson RA (1996) Cerebral blood flow. In: RH Wilkins, SS Rengachary (eds): Neurosurgery. McGraw-Hill, New York, 1997–2007

    Google Scholar 

  21. Broman T, Olsson 0 (1949) Experimental study of contrast media for cerebral angiography with reference to possible injurious effects on the cerebral blood vessels. Acta Radiol 31: 321–334

    Article  PubMed  CAS  Google Scholar 

  22. Rapoport SI, Hori M, Klatxo I (1972) Testing of a hypothesis of osmotic opening of the blood-brain barrier. Am J Physiol 223: 323–331

    PubMed  CAS  Google Scholar 

  23. Brightman MW, Hod M, Rapoport SI, Reese TS, Westergaard E (1973) Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152: 317–325

    Article  PubMed  CAS  Google Scholar 

  24. Dorovini-Zis K, Bowman PB, Betz AL, Goldstein GW (1984) Hyperosmotic arabinose solutions open tigh junctions between brain capillary endothelial cells in tissue culture. Brain Res 302: 383–386

    Article  PubMed  CAS  Google Scholar 

  25. Rapaport SI, Fredericks WR, Ohno K, Pettigrew KD (1980) Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am J Physiol 238: R421–R431

    Google Scholar 

  26. Gummerlock MK, Neuwelt EA (1990) The effects of anesthesia on osmotic blood-brain barrier disruption. Neurosurgery 26: 268–277

    Article  Google Scholar 

  27. Remsen LG, Pagel MA, McCormack CI, Fiamengo S, Sexton G, Neuwelt EA (1999) The influence of anesthetic choice, PaCO2, and other factors on osmotic blood-brain barrier disruption in rats with brain tumor xenografts. Anesth Analg 88: 559–567

    PubMed  CAS  Google Scholar 

  28. Fortin D, McCormick CI, Remsen LG, Nixon R, Neuwelt EA (2000) Unexpected neurotoxicity of etoposide phosphate administered in combination with other chemotherapeutic agents after blood-brain barrier modification to enhance delivery, using propofol for general anesthesia, in a rat model. Neurosurgery 47: 199–207

    PubMed  CAS  Google Scholar 

  29. Bhattacharjee AK, Nagashima T, Kondoh T, Tamaki N (2001) Quantification of early blood-brain barrier disruption by in situ brain perfusion technique. Brain Res Prot 8: 126–131

    Article  CAS  Google Scholar 

  30. Blasberg RG, Groothuis D, Molnar P (1990) A review of hyperosmotic blood-brain barrier disruption in seven experimental brain tumor models. In: BB Johansson, C Owman, H Widner (eds): Pathophysiology of the Blood-Brain Barrier. Elsevier, Amsterdam, 197–220

    Google Scholar 

  31. Markowsky SJ, Zimmerman CL, Tholl D, Soria I, Castillo R (1991) Methotrexate disposition following disruption of the blood-brain barrier. Ther Drug Monit 13: 24–31

    Article  PubMed  CAS  Google Scholar 

  32. Robinson PJ, Rapoport SI (1991) Model for drug uptake by brain tumors: Effects of osmotic treatment and of diffusion in brain. J Cereb Blood Flow Metab11: 165–168

    Article  Google Scholar 

  33. Remsen LG, McCormick CI, Sexton G, Pearse HD, Garcia R, Neuwelt EA (1995) Decreased delivery and acute toxicity of cranial irradiation and chemotherapy given with osmotic blood-brain barrier disruption in a rodent model: The issue of sequence. Clin Cancer Res 1: 731–739

    PubMed  CAS  Google Scholar 

  34. Kramer S (1968) The hazards of therapeutic irradiation of the central nervous system. Clin Neurosurg 15: 301–318

    PubMed  CAS  Google Scholar 

  35. Doran SE, Ren XD, Betz AL, Pagel MA, Neuwelt EA, Roessler BJ, Davidson BL (1995) Gene expression from recombinant viral vectors in the CNS following blood-brain barrier disruption. Neurosurgery 36: 965–970

    Article  PubMed  CAS  Google Scholar 

  36. Muldoon LL, Nilaver G, Kroll RA, Pagel MA, Breakefield XO, Chiocca EA, Davidson BL, Weissleder R, Neuwelt EA (1995) Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus and iron oxide particles to normal rat brain. Am J Pathol 147: 1840–1851

    PubMed  CAS  Google Scholar 

  37. Neuwelt EA, Barnett PA, Hellstrom I, Hellstrom KE, Beaumier P, McCormick CI, Weigel RM (1988) Delivery of melanoma-associated immunoglobulin monoclonal antibody and Fab fragments to normal brain utilizing osmotic blood-brain barrier disruption. Cancer Res 48: 4725–4729

    PubMed  CAS  Google Scholar 

  38. Neuwelt EA, Specht HD, Barnett PA, Dahlborg SA, Miley A, Larson SM, Brown P, Ecker-Man KF, Hellstrom KE, Hellstrom I (1987) Increased delivery of tumor-specific monoclonal antibodies to brain after osmotic blood-brain barrier modification in patients with melanoma metastatic to the central nervous system. Neurosurgery 20: 885–895

    Article  PubMed  CAS  Google Scholar 

  39. Neuwelt EA, Weissleder R, Nilaver G, Kroll RA, Roman-Goldstein S, Szumowski J, Pagel MA, Jones RS, Remsen LG, McCormick CI et al (1994) Delivery of virus-sized iron oxide particles to rodent CNS neurons. Neurosurgery 34: 777–784

    Article  PubMed  CAS  Google Scholar 

  40. Nilaver G, Muldoon LL, Kroll RA, Pagel MA, Breakefield XO, Davidson BL, Neuwelt EA (1995) Delivery of herpesvirus and adenovirus to nude rat intracerebral tumors following osmotic blood-brain barrier disruption. Proc Natl Acad Sci USA 92: 9829–9833

    Article  PubMed  CAS  Google Scholar 

  41. Doolittle ND, Miner ME, Hall WA, Siegal T, Hanson EJ, Osztie E, McAllister LD, Bubalo JS, Kraemer DF, Fortin D et al (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 88: 637–647

    Article  PubMed  CAS  Google Scholar 

  42. Yang W, Barth RF, Carpenter DE, Moeschberger ML, Goodman JH (1996) Enhanced delivery of boronophenylalanine by means of intracarotid injection and blood-brain barrier disruption for neutron capture therapy. Neurosurgery 38: 985–992

    Article  PubMed  CAS  Google Scholar 

  43. Fortin D, McAllister LD, Nesbit G, Doolittle ND, Miner M, Hanson JE, Neuwelt EA (1999) Unusual cervical spine cord toxicity associated with intra-arterial carboplatin, intra-arterial or intravenous etoposide phosphate, and intravenous cyclophosphamide with osmotic blood-brain barrier disruption in the vertebral artery. Am J Neuroradiol 20: 1794–1802

    PubMed  CAS  Google Scholar 

  44. Saris SC, Blasberg RG, Carson RE (1991) Intravascular streaming during carotid infusion: demonstration in humans and reduction using diastole-phased pulsatile administration. Neurosurg 74: 763–772

    Article  CAS  Google Scholar 

  45. Roman-Goldstein S, Clunie DA, Stevens J, Hogan R, Monard J, Ramsey F, Neuwelt EA (1994) Osmotic blood-brain barrier disruption: CT and radionuclide imaging. Am J Neuroradiol 15: 581–590

    PubMed  CAS  Google Scholar 

  46. Kraemer DF, Fortin D, Doolittle ND, Neuwelt EA (2001) Association of total dose intensity of chemotherapy in promary central nervous system lymphoma and survival. Neurosurgery 48:1033–1041

    Article  PubMed  CAS  Google Scholar 

  47. Siegal T, Rubinstein R, Bokstein F, Schwartz A, Lossos A, Shalom E, Chisin R, Gomori JM (2000) In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J Neurosurg 92: 599–605

    Article  PubMed  CAS  Google Scholar 

  48. Rapoport SI (1996) Modulation of blood-brain barrier permeability. J Drug Target 3: 417–435

    Article  PubMed  CAS  Google Scholar 

  49. McAllister LD, Doolittle ND, Guastadisegni PE, Kraemer DF, Lacy CA, Crossen JR, Neuwelt EA (2000) Cognitive outcomes and long-term follow-up results after enhanced chemotherapy delivery for primary central nervous system lymphoma. Neurosurgery 46: 51–61

    Article  PubMed  CAS  Google Scholar 

  50. Doolittle ND, Muldoon LL, Brummett RE, Tyson RM, Lacy C, Bubalo JS, Kraemer DF, Heinrich MC, Henry JA, Neuwelt EA (2001) Delayed sodium thiosulfate as an otoprotectant agent against carboplatin-induced hearing loss in patients with malignant brain tumors. Clin Cancer Res 7: 493–500

    PubMed  CAS  Google Scholar 

  51. Doolittle ND, Tyson RM, Lacy C, Quipotla JL, Bubalo JS, Kraemer DF, DeLoughery T, Neuwelt EA (2001) Potential Role of delayed high-dose sodium thiosulfate as protectant against carboplatin-based thrombocytopenia in patients with malignant brain tumors. Neuro-Oncology 3: 357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Fortin, D. (2003). Altering the properties of the blood-brain barrier: disruption and permeabilization. In: Prokai, L., Prokai-Tatrai, K. (eds) Peptide Transport and Delivery into the Central Nervous System. Progress in Drug Research, vol 61. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8049-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8049-7_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9420-3

  • Online ISBN: 978-3-0348-8049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics