Skip to main content

Multiparticle Modeling of Actin-Myosin Networks: From Molecular Interactions to Cell Motility

  • Chapter
Book cover Polymer and Cell Dynamics

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

  • 361 Accesses

Summary

Active motility and locomotion of animal tissue cells are based on the interaction of actin and myosin, which form a contractile network within the cell. We present two related stochastic multiparticle models of actin-myosin dynamics on different spatial scales: first, a model on the mesoscopic scale, focusing on some basic aspects of the behavior of small and medium-sized actin-myosin II systems in vitro and second, a model on the macroscopic scale, which relies on some results of the first model and which describes whole cell shape changes in vivo. Computer simulations show how simple rules for molecular interaction can result in a quite complex and naturally appearing behavior in both model systems. We also stress the advantage of modeling certain phenomena within the same context on different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Alt. Statistics and dynamics of cellular shape changes. In M. A. Chaplain, G. D. Singh, and J. C. McLachlan, editors, On growth and form, pages 287–307. John Wiley & Son, Ltd., Chichester, 1999.

    Google Scholar 

  2. W. Alt, O. Brosteanu, and B. Hinz. Patterns for spontaneous motility in videomicrographs of human epidermal keratinocytes (HEK). Biochem. Cell Biol., 73:441–459, 1995.

    Article  Google Scholar 

  3. W. Alt and M. Dembo. Cytoplasm dynamics and cell motion: two-phase fluid models. Math. Biosci., 156:207–228, 1999.

    Article  MATH  Google Scholar 

  4. G.G. Borisy and T.M. Svitkina. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol., 12:104–112, 2000.

    Article  Google Scholar 

  5. D.C. Bottino. Computer simulations of mechanochemical coupling in a deforming domain: application to cell motion. In Ph.K. Maini and H. Othmer, editors Mathematical Models for Biological Pattern Formation volume 121 of IMA Volumes in Mathematics and its Applications Frontiers in Applied Mathematics Series, pages 295–314. Springer, New York, 2000.

    Google Scholar 

  6. D.C. Bottino and L.J. Fauci. A computational model of ameboid deformation and locomotion. Eur. Biophys J., 27:532–539, 1998.

    Article  Google Scholar 

  7. D.C. Bottino, et al. How nematode sperm crawl. J. Cell Sci., 115:367–384, 2002.

    Google Scholar 

  8. A. Boulbitch, A. Mogilner, T. Roberts, M. Steward, and G. Oster. Shape instability of a biomembrane driven by a local softening of the underlying actin cortex. Phys. Rev. E, 62: 3974–3985, 2000.

    Article  Google Scholar 

  9. D. Bray. Cell Movements. Garland Publishing, 1992.

    Google Scholar 

  10. C.C. Cunningham. Actin polymerization and intracellular solvent flow in cell surface blebbing. J. Cell Biol., 129: 1589–1599, 1995.

    Article  Google Scholar 

  11. M. Doi and S.F. Edwards, The Theory of Polymer Dynamics. Oxford University Press1986.

    Google Scholar 

  12. M. Edlund, M.A. Lotano, and C.A. Otey.Dynamics of a-actinin in focal adhesions and stress fibers visualized with a-actinin-green fluorescent protein. Cell Mot. Cytoskel, 48.:190–200,2001.

    Article  Google Scholar 

  13. Z. Farkas, I. Derenyi, and T. Vicsek. The dynamics of actin filaments in motility assays: a microscopic model and its numerical simulation. This issue.

    Google Scholar 

  14. D. Felix. Modellierung and Simulation der dynamischen Eigenschaften von Aktin-Myosin-Polymernetzwerken. Diploma thesis, Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn, 1999.

    Google Scholar 

  15. G. Forgacs. Cooperative phenomena in physical networks. In D. Beysens and G. Forgacs, editors Dynamical networks in physics and biology, pages 3–13. Springer, Berlin/Heidelberg/New York, 1998.

    Google Scholar 

  16. E. Frey, K. Kroy, and J. Wilhelm. Physics of solutions and networks of semiflexible macromolecules and the control of cell function. In B. T. Stokke, editor The Wiley Polymer Networks Group Review Series Volume 2. Wiley, 1998.

    Google Scholar 

  17. Y.C. Fung. Biomechanics. Springer Verlag, 1993.

    Google Scholar 

  18. Y. Harada, A. Noguchi, A. Kishino, and T. Yanagida. Sliding movement of single actin filaments on one-headed myosin filaments. Nature, 326: 805–808, 1987.

    Article  Google Scholar 

  19. A.K. Harris. Protrusive activity of the cell surface and the movements of tissue cells. In N. Akkas, editor Biomechanics of active movement and deformation of cells, volume H 42 of NATO ASI Series, pages 249–294. Springer, Berlin/Heidelberg, 1990.

    Chapter  Google Scholar 

  20. P.A. Janmey, S. Hvidt, J. Käs, D. Lerche, A. Maggs, E. Sackmann, M. Schliwa, and T.P. Stossel. The mechanical properties of actin gels. Journal of Biological Chemistry, 269(51): 32503–32513, December 1994.

    Google Scholar 

  21. J. Käs, H. Strey, J.X. Tang, D. Finger, R. Ezzel, E. Sackmann, and P.A. Janmey. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys. J., 70:609–625, 1996.

    Article  Google Scholar 

  22. J. Lenz. Many-particle simulation of ameboid motility. Future Gener. Comput. Syst., 17:863–872, 2001.

    Article  MATH  Google Scholar 

  23. Th. Libotte, H.-W. Kaiser, W. Alt, and T. Bretschneider. Polarity, protrusion-retraction dynamics and their interplay during keratinocyte cell migration. Exp. Cell Res., 270:129–137, 2001.

    Article  Google Scholar 

  24. H. Lodish, et al. Molecular Cell Biology. W.H. Freeman and Company, 2000.

    Google Scholar 

  25. A. Palmer, T.G. Mason, J. Xu, S.C. Kuo, and D. Wirtz. Diffusing wave spectroscopy microrheology of actin filament networks. Biophys. J., 76:1063–1071, 1999.

    Article  Google Scholar 

  26. Ch.S. Peskin. Numerical analysis of blood flow in the heart. J. Comput. Phys., 25:220–252, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Promayon, J.L. Martiel, and P. Tracqui. Physical-object oriented 3d simulations of cell deformations and migration. This issue.

    Google Scholar 

  28. R. Sambeth and A. Baumgaertner. Autocatalytic polymerisation generates persistent random walk of crawling cells.Phys. Rev. Lett., 86: 5196–5199, 2001.

    Article  Google Scholar 

  29. R. Sambeth and A. Baumgaertner. Locomotion of a two-dimensional keratocyte model. J. Biol. Systems, 9: 201–219, 2001.

    Article  Google Scholar 

  30. T. Surrey, F. Nédélec, S. Leibler, and E. Karsenti. Physical properties determining self-organization of motors and microtubules. Science, 292: 1167–1171, 2001.

    Article  Google Scholar 

  31. K. Takiguchi. Heavy meromyosin induces sliding movements between antiparallel actin filaments. Journal of Biochemistry, 109: 520–527, 1991.

    Google Scholar 

  32. J.X. Tang, J.A. Käs, J.V. Shah, and P.A. Janmey. Counterion-induced actin ring formation. Eur. Biophys. J., 30: 477–484, 2001.

    Article  Google Scholar 

  33. M. Tempel, G. Isenberg, and E. Sackmann. Temperature-induced sol-gel transition and microgel formation in a-actinin crosslinked actin networks: a rheological study. Phys. Rev. E, 54: 1802–1810, 1996.

    Article  Google Scholar 

  34. T.Q.P. Uyeda, S.J. Kron, and J.A. Spudich. Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. Journal of Molecular Biology, 214: 699–710, 1990.

    Article  Google Scholar 

  35. A.B. Verkhovsky, T.M. Svitkina, and G.G. Borisy. A network contraction model for cell translocation and retrograde flow. Cell Behaviour: Control and Mechanism of Motility, pages 207–222, 1999.

    Google Scholar 

  36. J. Xu, W.H. Schwarz, J.A. Käs, T.P. Stossel, P.A. Janmey, and T.D. Pollard. Mechanical properties of actin filament networks depend on preparation, polymerization conditions, and storage of actin monomers. Biophys. J, 74: 2731–2740, 1998.

    Article  Google Scholar 

  37. F. Ziemann, J. Rädler, and E. Sackmann. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophys. J., 66: 2210–2216, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Lenz, J., Felix, D. (2003). Multiparticle Modeling of Actin-Myosin Networks: From Molecular Interactions to Cell Motility. In: Alt, W., Chaplain, M., Griebel, M., Lenz, J. (eds) Polymer and Cell Dynamics. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8043-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8043-5_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9417-3

  • Online ISBN: 978-3-0348-8043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics