Skip to main content

Interactive Movement, Aggregation, and Swarm Dynamics

  • Chapter

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Summary

We consider a general class of models for biological interactive movement describing collective phenomena such as chemotaxis and tensiotaxis of cells or swarming of birds. Using the joint name ‘bimes’ for such biological interacting and moving entities, we suppose that communication between ‘bimes’ is performed via a specific medium by establishing therein a dynamic interaction field, whose perception stimulates the dynamic response and motile activity of each single ’bime’. In some particular cases, sample simulations are shown for one and two spatial dimensions. We discuss how a proposed general modeling approach using Voronoi tessellation and Delaunay triangulation might help to formulate and simulate collective cell movement with direct cell-cell contact, as occurs in models for wound healing and other cell tissue dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Alt, O. Brosteanu, B. Hinz and H.W. Kaiser (1995) Patterns of spontaneous motility in videomicrographs of human epidermal keratinocytes (HEK). Biochemistry and Cell Biology 73, 441–459

    Article  Google Scholar 

  2. W. Alt (2002) Nonlinear hyperbolic systems of generalized Navier-Stokes type for interactive motion in biology. In: Geometric Analysis and Nonlinear Partial Differential Equations (S. Hildebrandt, H. Karcher eds.) Springer-Verlag, Berlin, 431–459

    Google Scholar 

  3. J.T. Bonner (1998) A way of following individual cells in the migrating slugs of Dictyostelium discoideum. Proc. Nat. Acad. Sci. 95, 9355–9359

    Article  Google Scholar 

  4. J.P. Boris, A.M. Landsberg, E.S. Oran, J.H. Gardner (1993) LCPFCT - A flux-corrected transport algorithm for solving generalized continuity equations. NRL Memorandum Report 93-7192

    Google Scholar 

  5. D.C. Bottino (2000) Computer simulations of mechanochemical coupling in a deforming domain: Application to cell motion. In: (Ph. K. Maini and H. Othmer, eds.) Mathematical Models for Biological Pattern Formation, Springer, New York, 295–314

    Google Scholar 

  6. T. Bretschneider, B. Vasiev, C.J. Weijer (1997) A model for cell movement during Discyostelium mound formation. J. Theor. Biol. 189, 41–51

    Article  Google Scholar 

  7. T. Bretschneider (2003) Reinforcement of cytoskeleton-matrix bounds and tensiotaxis: A cell based model. In: (A. Deutsch, J. Howard, M. Falcke, W. Zimmermann eds.) Function and Regulation of Cellular Systems: Experiments and Models. To appear in Birkhäuser-Verlag, Basel

    Google Scholar 

  8. A. Czirok, T. Vicsek (2000) Collective behaviour of interacting self-propelled particles. J. Phys. A 281, 17–29

    Google Scholar 

  9. J.C. Dallon, H.G. Othmer (1997) A discrete cell model with adaptive signaling for aggregation of Dictyostelium discoideum. Phil. Trans. Royal Soc. London: Ser. B 352, 391–417

    Article  Google Scholar 

  10. P. Dieterich, M. Odenthal-Schnittler, C. Mrowietz, M. Krämer, L. Sasse, H, Oberleitner, H.-J. Schnittler (2000) Quantitative morphodynamics of endothelial cells within confluent cultures in reponse to fluid shear stress. Biophys. J. 79, 1285–1297

    Article  Google Scholar 

  11. P. Dieterich, J. Seebach, H.-J. Schnittler (2003) Quantification of shear stress induced cell migration in endothelial cultures. In: Function and Regulation of Cellular Systems: Experiments and Models. (A. Deutsch, J. Howard, M. Falcke, W. Zimmermann eds.) To appear in Birkhäuser-Verlag, Basel

    Google Scholar 

  12. M. Dworkin, D. Kaiser, eds. (1993) Myxobacteria II. Amer. Society of Microbiology, Washington

    Google Scholar 

  13. W. Ebeling, F. Schweitzer (2001) Swarms of particle agents with harmonic interactions. Theory Biosciences 120, 207–224

    Google Scholar 

  14. C.G. Galbraith, M.P. Sheetz (1998) Forces on adhesive contacts affect cell function. Curr. Opin. Cell Biol. 10, 566–571

    Article  Google Scholar 

  15. F.H. Heppner (1997) Three-dimensional structure and dynamics of bird flocks. In: (J.K. Parrish, W.M. Hammer eds.) Animal Groups in Three Dimensions. Cambridge University Press, 68–89

    Google Scholar 

  16. B. Hinz, W. Alt, C. Johnen, V. Herzog, H.W. Kaiser (1999) Quantifying lamella dynamics of cultured cells by SACED, a new computer assisted motion analysis. Exp. Cell Research 251, 234–243

    Article  Google Scholar 

  17. T. Höfer, J.A. Sherratt, P.K. Maini (1995) Cellular pattern formation during Dictyostelium aggregation. Physica D 85, 425–444

    Article  MATH  Google Scholar 

  18. H. Honda (1978) Description of cellular patterns by Dirichlet domains: The two-dimensional case. J. Theor. Biol. 203, 317–333

    MathSciNet  Google Scholar 

  19. H. Honda (1983) Geometrical models for cells in tissues. Int. Rev. Cytology 81, 191–248

    Article  Google Scholar 

  20. Th. Libotte, H.-W. Kaiser, W. Alt, T. Bretschneider (2001) Polarity, protrusion-retraction dynamics and their interplay during keratinocyte cell migration. Exp. Cell Research 270,129–137

    Article  Google Scholar 

  21. F.A. Meinicke, S.C. Potten, M. Loeffler (2001) Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 34, 253–266

    Article  Google Scholar 

  22. R. Müller (2002) Dynamik in stochastischen Vielteilchensystemen zur Modellierung von Vogelschwärmen. Diploma thesis Univ. Bonn

    Google Scholar 

  23. R.M. Nerem (1993) Hemodynamics and the vascular endothelium. J. Biomech. Engin. 115, 510–514

    Article  Google Scholar 

  24. E. Palsson (2001) A three-dimensional model of cell movement in multicellular systems. Future Gen. Comp. Systems 17, 835–852

    Article  MATH  Google Scholar 

  25. A. Stevens (2000) The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61, 183–212

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Stevens, F. Schweitzer (1997) Aggregation induced by diffusing and nondiffusing media. In: Dynamics of Cell and Tissue Motion (W. Alt, A. Deutsch, G. Dunn eds.) Birkhäuser, Basel, 183–192

    Chapter  Google Scholar 

  27. D. Sulsky, S. Childress, J.K. Percus (1986) A model for cell sorting. J. Theor. Biol. 106, 275–301

    Article  Google Scholar 

  28. M. Weliky, G. Oster (1990) The mechanical basis of cell rearrangement. I. Epithelial morpho-genesis during Fundulus epiboly. Development 109, 373–386

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Alt, W., Bretschneider, T., Müller, R. (2003). Interactive Movement, Aggregation, and Swarm Dynamics. In: Alt, W., Chaplain, M., Griebel, M., Lenz, J. (eds) Polymer and Cell Dynamics. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8043-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8043-5_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9417-3

  • Online ISBN: 978-3-0348-8043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics