Skip to main content

For an Axiomatic Theory of Classifications

  • Chapter
  • 1351 Accesses

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

We want now to take a glance at the logical form a theory of classifications (whatever these may be) could get in general. We must remark, first, that a logical approach to classifications (especially from an intensional viewpoint) never won unanimous support among the ancient philosophers and logicians (as proven by the numerous discussions between Aristotle and Plato, Ramus and Pascal, Jevons and Joseph).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recall that the axiom of separation is the axiom saying that, given any set A, there is a set B such that, given any set x, x is a member of B iff x is a member of A and f holds for x (see [518520]).

  2. 2.

    The axiom of comprehension is the axiom saying that there exists a set B whose members are precisely those objects that satisfy a predicate P without any kind of restriction on P. This axiom schema was tacitly used in the early days of naive set theory, i.e. before a strict axiomatization had been adopted. Unfortunately, it leads directly, as we have seen in Sect. 3.7.1, to Russell’s paradox, by defining P as xx.

  3. 3.

    Isaac Malitz (see [330]) originally introduced this designation in his 1976 PHD thesis at UCLA (Church was the chairman of the committee of supervisors). A more recent paper on the consistency of positive theory of sets is: [156], 105–116.

  4. 4.

    A formula f is said to be stratified if there exists a function f from the parts of syntax of the natural numbers, such that, for any atomic subformula of f, we have f(y)=f(x)+1, while, for any atomic subformula x=y of f, we have f(x)=f(y).

References

  1. Apostel, L.: Le problème formel des classifications empiriques. In: La Classification dans les Sciences, pp. 157–230. Duculot, Bruxelles (1963)

    Google Scholar 

  2. Carpenter, B., Pollard, C.J.: Inclusion, disjointness and choice: the logic of linguistic classification. In: Proceedings of the 29th Annual Meeting of the ACL, pp. 9–16 (1991)

    Google Scholar 

  3. Cori, R., Lascar, D.: Logique mathématique, 2 tomes. Masson, Paris (1994)

    Google Scholar 

  4. da Costa, N.C.A.: On two systems of set theory. Proc. K. Ned. Akad. Wet., Ser. A 68, 95–99 (1965)

    MATH  Google Scholar 

  5. da Costa, N.C.A.: Two formal systems of set theory. Proc. K. Ned. Akad. Wet., Ser. A 70, 45–51 (1967)

    MATH  Google Scholar 

  6. da Costa, N.C.A.: On a set theory suggested by Dedecker and Ehresman I. Proc. Jpn. Acad. 45(10), 880–884 (1969). 194

    Article  MATH  Google Scholar 

  7. da Costa, N.C.A.: On a set theory suggested by Dedecker and Ehresman II. Proc. Jpn. Acad. 45(10), 885–888 (1969). 195

    Article  MATH  Google Scholar 

  8. da Costa, N.C.A.: On the underlying logic of two systems of set theory. Proc. K. Ned. Acad. Wet., Ser. A 73, 1–8 (1970)

    MATH  Google Scholar 

  9. da Costa, N.C.A.: α-Models and the systems T and T*. Notre Dame J. Form. Log. XV(3), 443–454 (1974)

    Article  Google Scholar 

  10. Curry, H.B.: Review of Logic for Mathematicians by J.B. Rosser. Bull. Am. Math. Soc. 60, 266–272 (1954)

    Article  MathSciNet  Google Scholar 

  11. Dedecker, P.: Introduction aux structures locales. In: Colloque de géométrie différentielle globale, Brussels, pp. 103–135 (1958)

    Google Scholar 

  12. Ehresmann, C.: Gattungen von lokalen Strukturen. Jahresber. Deutsch. Math.-Ver. 60, 49–77 (1957)

    MathSciNet  MATH  Google Scholar 

  13. Esser, O.: On the consistency of a positive theory. Math. Log. Q. 45(1), 105–116 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forster, T.E.: Set Theory with a Universal Set, Exploring an Untyped Universe (1991). Clarendon, Oxford (1995)

    Google Scholar 

  15. van Heijenoort, J. (ed.): A Source Book in Mathematical Logic 1879–1931. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

  16. Holmes, R.: Strong axioms of infinity in NFU. J. Symb. Log. 66(1), 87–116 (2001)

    Article  MATH  Google Scholar 

  17. Jensen, R.B.: On the consistency of a slight (?) modification of Quine’s “New foundations”. Synthese 19, 250–263 (1969)

    Article  Google Scholar 

  18. Kelley, J.L.: General Topology. Van Nostrand, New York (1955). New ed.: Springer, Berlin, Heidelberg, New York (1975)

    MATH  Google Scholar 

  19. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)

    MATH  Google Scholar 

  20. Malitz, R.J.: Set theory in which the axiom of foundation fails. Ph.D. thesis, UCLA

    Google Scholar 

  21. Morse, A.P.: A Theory of Sets. Academic Press, New York (1965)

    MATH  Google Scholar 

  22. Osswald, R.: A logic of classification with applications to linguistic theory. Dr Dissertation, Fachbereich Informatik der FernUniversität Hagen, September 2002

    Google Scholar 

  23. Poincaré, H.: Dernières Pensées. Translated from the French by J.W. Bolduc, Mathematics and Science: Last Essays. Dover, New York (1913)

    Google Scholar 

  24. Pollard, C.J., Sag, I.A.: Information-Based Syntax and Semantics, vol. 1. CSLI Lecture Notes, vol. 13. CSLI, Stanford (1987)

    Google Scholar 

  25. Quine, W.V.O.: New foundations for mathematical logic. Am. Math. Mon., 44, 70–80 (1937). Reprinted in Quine, W.V.O., From a logical point of view (1953), pp. 81–101. Harvard University Press, Harvard, (1980)

    Article  MathSciNet  Google Scholar 

  26. Rosser, J.B.: Logic for Mathematicians. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  27. Shelah, S.: Classification Theory, and the Number of Non-isomorphic Models. North-Holland, Amsterdam (1978). 2nd edn. 1990

    MATH  Google Scholar 

  28. Sonner, J.: On the formal definition of categories. Math. Z. 80, 163–176 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. Specker, E.P.: The axiom of choice in Quine’s “New foundations for mathematical logic”. Proc. Natl. Acad. Sci. USA 39(9), 972–975 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vickers, S.: Topology via Logic. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  31. Winograd, T.: Language as a Cognitive Process: Syntax. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  32. Zermelo, E.: Beweiss, dass jede Menge wohlgeordnet werden kann (Aus einem an Herrn Hilbert gerichteten Briefe). Math. Ann. 59, 514–516 (1904)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zermelo, E.: Neue Beweis für die Müglichkeit einer Wohlordnung. Math. Ann. 65, 107–128 (1908)

    Article  MATH  Google Scholar 

  34. Zermelo, E.: Untersuchungen über di Grundlagen der Mengenlehre. Math. Ann. 65, 261–281 (1908)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Parrochia, D., Neuville, P. (2013). For an Axiomatic Theory of Classifications. In: Towards a General Theory of Classifications. Studies in Universal Logic. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0609-1_8

Download citation

Publish with us

Policies and ethics