Skip to main content

Local in Space Energy Estimates for Second-order Hyperbolic Equations

  • Chapter
  • First Online:
  • 1123 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 301))

Abstract

In the first part of the paper we review some recent results concerning the propagation of analytic regularity for the s-Gevrey solutions, with \( s < \overline{m}/(\overline{m}-1) \), to the semilinear (weakly) hyperbolic equations with characteristics of multiplicity \( \leq\overline{m} \).The main results are concerning two special classes of equations: the equations with coefficients depending only on time, and those in space dimension one. These results rely on suitable a priori estimates for the corresponding linearized equations, based on the theory of quasisymmetrizer. In view of these a priori estimates, the case of several space variables is quite different from that of one space variable: in the latter the quasisymmetrizer provides an energy integral on each open subset of \( \mathbb{R}^1 \), and this ensures the propagation of regularity along the cones of determinacy, whereas in the multidimensional case we can only define the energy on the whole \( \mathbb{R}^n \)

The second part of the paper is devoted to the Cauchy problem for the second-order linear hyperbolic equations. For these equations, we are in the position to get an energy estimate along the cones of determinacy, which will imply, for the corresponding semilinear equations, the analytic propagation along these cones for all the s-Gevrey solution with \( s < 2 \). The proof of this energy estimate is only sketched.

Mathematics Subject Classification. Primary 35L15; Secondary 35B65.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Alinhac and G. Métivier, Propagation de l’analyticité des solutions de systèmes hyperboliques non-linéaires, Invent. Math. 75 (1984), 189–204.

    Google Scholar 

  2. J.-M. Bony and P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math. 17 (1972), 95–105.

    Article  MathSciNet  MATH  Google Scholar 

  3. M.D. Bronšteǐn, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moskov. Mat. Obshch. 41 (1980), 83–99.

    Google Scholar 

  4. F. Colombini and J. Rauch, Sharp finite speed for hyperbolic problems well posed in Gevrey classes, Comm. P.D.E. 36 (2011), 1–9.

    Google Scholar 

  5. M. Cicognani and L. Zanghirati, Analytic regularity for solutions of nonlinear weakly hyperbolic equations, Boll. Un. Mat. Ital. B (7) 11 (1997), 643–679.

    Google Scholar 

  6. P. D’Ancona and S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 169–185.

    Google Scholar 

  7. L. Gårding, Solution directe du problème de Cauchy pour les équations hyperboliques, Coll. Int. CNRS Nancy, 1956, 71–89.

    Google Scholar 

  8. E. Jannelli, On the symmetrization of the principal symbol of hyperbolic equations, Comm. P.D.E. 14 (1989), 1617–1634.

    Google Scholar 

  9. E. Jannelli, The hyperbolic symmetrizer: theory and applications, Advances in phase space analysis of partial differential equations (A. Bove, D. Del Santo, and M.K.V. Murthy, eds.), Progress in Nonlinear Differential Equations and Their Applications, vol. 78, Birkhäuser Boston, MA, 2009, 113–139.

    Google Scholar 

  10. J. Leray, Hyperbolic Differential Equations, The Institute for Advances Studies, Princeton, N.J., 1953, 238 pp., reprinted November 1955.

    Google Scholar 

  11. K. Kajitani and K. Yamaguti, Propagation of analyticity of the solutions to the Cauchy problem for nonlinear symmetrizable systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 471–487.

    Google Scholar 

  12. P.D. Lax, Non linear hyperbolic equations, Comm. on Pure Appl. Math. 6 (1953), 231–258.

    Article  MathSciNet  MATH  Google Scholar 

  13. R.Manfrin, Analytic regularity for a class of semi-linear weakly hyperbolic equations of second order, NoDEA (Nonlin. Diff. Equat. Appl.) 3 (1996), 371–394.

    Google Scholar 

  14. S. Mizohata, Analyticity of solutions of hyperbolic systems with analytic coefficients, Comm. on Pure Appl. Math. 14 (1961), 547–559.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Nishitani, Sur les équations hyperboliques a coefficients höldériens en et de classe de Gevrey en, Bull. Sc. Math. 107 (1983), 113–138.

    MathSciNet  MATH  Google Scholar 

  16. Y. Ohya and S. Tarama, Le problème de Cauchy à caractéristiques multiples dans la classe de Gevrey. Coefficients höoldériens en t, Hyperbolic equations and related topics, Proc. Taniguchi Int. Symp., Katata and Kyoto/Jap. 1984 (1986), 273–306.

    Google Scholar 

  17. J. Rauch, Precise finite speed and uniqueness in the Cauchy problem for symmetrizable hyperbolic systems, Trans. Amer. Math. Soc. 363 (2011), 1161–1182.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Reissig and K. Yagdjian, Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Math. Nachr. 178 (1996), 285–307.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Spagnolo, Some results of analytic regularity for the semilinear weakly hyperbolic equations of the second order, Rend. Sem. Mat. Torino Fasc. speciale (1988), 203–229.

    Google Scholar 

  20. S. Spagnolo, Propagation of analyticity for a class of nonlinear hyperbolic equations, Rend. Mat. Acc. Lincei 22 (2011), 135–149.

    Google Scholar 

  21. S. Spagnolo and G. Taglialatela, Analytic propagation for nonlinear weakly hyperbolic systems, Comm. P.D.E. 35 (2010), 2123–2163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Spagnolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Spagnolo, S., Taglialatela, G. (2012). Local in Space Energy Estimates for Second-order Hyperbolic Equations. In: Ruzhansky, M., Sugimoto, M., Wirth, J. (eds) Evolution Equations of Hyperbolic and Schrödinger Type. Progress in Mathematics, vol 301. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0454-7_16

Download citation

Publish with us

Policies and ethics