Skip to main content

Random Hill’s Equations, Random Walks, and Products of Random Matrices

  • Conference paper
  • First Online:
Book cover Recent Trends in Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 35))

Abstract

Hill’s equations arise in a wide variety of physical problems, and are specified by a natural frequency, a periodic forcing function, and a forcing strength parameter. This classic problem can be generalized by allowing the forcing strength q k , the frequency λ k , and the period (Δ τ) k of the forcing function to vary from cycle to cycle. The growth rates for the solutions are then given by the growth rates of a matrix transformation, under matrix multiplication, where the elements vary from cycle to cycle. Simplified models of such problems are given by products of 2 ×2 random matrices drawn from a given class.

This paper analyzes two simple classes of models of 2 ×2 random matrices where the growth rates (Lyapunov exponents) can be computed in an explicit form. Both models are special cases of random products involving random similarity transformations. The first of these corresponds to the random Hill’s equation in a regime where the solutions are highly unstable. This model is a product of random similarity transformations of a fixed singular matrix. The second class of models is a two parameter class that studies products of 2 ×2 random symmetric matrices of a special form which are conjugated by random orthogonal similarities. These matrices are nonsingular in general, but in a special case they give rank one matrices, which may be compared with the first model. In the latter case the two models have different growth rate behavior, which arises from the different nature of the allowed similarity transformations in the models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1970)

    Google Scholar 

  2. Adams, F.C., Bloch, A.M.: Hill’s equation with random forcing terms. SIAM J. Appl. Math. 68, 947–980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, F.C., Bloch, A.M.: Hill’s equation with random forcing terms: the limit of delta function barriers. J. Math. Phys. 50, 073501 (2009)

    Article  MathSciNet  Google Scholar 

  4. Adams, F.C., Bloch, A.M.: Hill’s equation with random forcing parameters: determination of growth rates through random matrices. J. Stat. Phys. 139, 139–158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adams, F.C., Bloch, A.M., Butler, S.C., Druce, J.M., Ketchum, J.A.: Orbits and instabilities in a triaxial cusp potential. Astrophys. J. 670, 1027–1047 (2007)

    Article  Google Scholar 

  6. Binney, J.: Resonant excitation of motion perpendicular to galactic planes. Mon. Not. R. Astron. Soc. 196, 455–467 (1981)

    MATH  Google Scholar 

  7. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton Univ. Press, Princeton (1987)

    MATH  Google Scholar 

  8. Cohen, J.E., Newman, C.M.: The stability of large random matrices and their products. Ann. Prob. 12, 283–310 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhauser, Boston (1990)

    Book  MATH  Google Scholar 

  10. Comtet, A., Texler, C., Tourigny, Y.: Products of random matrices and generalized quantum point scatterers. J. Stat. Phys. 140, 427–466 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cook, J., Derrida, B.: Lyapunov exponents of large, sparse random matrices and the problem of directed polymers with complex random weights. J. Stat. Phys. 61, 961–986 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)

    Article  Google Scholar 

  15. Hill, G.W.: On the part of the motion of the lunar perigee which is a function of the mean motions of the Sun and Moon. Acta Math. 8, 1–36 (1886)

    Article  MathSciNet  MATH  Google Scholar 

  16. Högnäs, G.: On products of random projections. Acta Acad. Aboensis Ser. B 44(5), 18 pp. (1984)

    Google Scholar 

  17. Högnäs, G., Mukherjea, A.: Probability Measures on Semigroups. Convolution Products, Random Walks and Random Matrices, 2nd edn. Springer, New York (2011)

    Google Scholar 

  18. Keller, J.B.: Ponytail motion. SIAM J. Appl. Math. 70, 2667–2672 (2010)

    Article  MATH  Google Scholar 

  19. Key, E.: Computable examples of the maximal Lyapunov exponent. Probab. Theory Related Fields 75, 97–107 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kofman, L., Linde, A., Starobinsky, A.A.: Reheating after inflation. Phys. Rev. Lett. 73, 3195–3198 (1994)

    Article  Google Scholar 

  21. Lima, R., Rahibe, M.: Exact Lyapunov exponent for infinite products of random matrices. J. Phys. A Math. Gen. 27, 3427–3437 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubow, S.H.: Tidally driven inclination instability in Keplerian disks. Astrophys. J.398, 525–530 (1992)

    Google Scholar 

  23. Magnus, W., Winkler, S.: Hill’s Equation. Wiley, New York (1966)

    MATH  Google Scholar 

  24. Marklof, J.: Explicit invariant measures for products of random matrices. Trans. Am. Math. Soc. 360, 3391–3427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moshe, Y.: Random matrix produces and applications to cellular automata. J. Anal. Math. 99, 267–294 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Newman, C.M.: The distribution of Lyapunov exponents: exact results for random matrices. Commun. Math. Phys. 103, 121–126 (1986)

    Article  MATH  Google Scholar 

  27. Newman, C.M.: Lyapunov exponents for some products of random matrices: exact expressions and asymptotic distributions. In: Cohen, J.E., Kesten, H., Newman, C.M. (eds.) Random Matrices and Their Applications. Contemp., Math., vol. 50, pp. 121–141. AMS, Providence (1986)

    Chapter  Google Scholar 

  28. Peres, Y.: Domains of analytic continuation for the top Lyapunov exponent. Ann. Inst. H. Poincaré Probab. Stat. 28, 131–148 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Pincus, S.: Strong laws of large numbers for products of random matrices. Trans. Am. Math. Soc. 287, 65–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pollicott, M.: Maximal Lyapunov exponents for random matrix products. Invent. Math. 181, 209–226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stroock, D.: Essentials of Integration Theory for Analysis. Graduate Texts in Math. No. 262. Springer, New York (2011)

    Google Scholar 

  32. Tsiitsiklis, J.N., Blondel, V.D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate. Math. Control Signals Syst. 10, 31–40 (1997)

    Article  Google Scholar 

  33. Widder, D.H.: The Laplace Transform. Princeton Univ. Press, Princeton (1941)

    Google Scholar 

Download references

Acknowledgements

We thank Jake Ketchum for useful discussions. This work was supported in part by the NSF and NASA. The first author received support from NSF grant DMS-0806795 and NASA grant NNX11AK87G9. The second author received support form NSF grants DMS-0806756, DMS-0907949 and DMS-1207693. The third author received support from NSF grant DMS-1101373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Bloch .

Editor information

Editors and Affiliations

Additional information

Dedicated to Jürgen Scheurle on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Adams, F.C., Bloch, A.M., Lagarias, J.C. (2013). Random Hill’s Equations, Random Walks, and Products of Random Matrices. In: Johann, A., Kruse, HP., Rupp, F., Schmitz, S. (eds) Recent Trends in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 35. Springer, Basel. https://doi.org/10.1007/978-3-0348-0451-6_17

Download citation

Publish with us

Policies and ethics