Skip to main content

Introduction

  • Chapter

Abstract

In q-calculus we are looking for q-analogues of mathematical objects, which have the original object as limits when q tends to 1. In the q-analysis, we make formal proofs as follows. The validity of the obtained formula depends on the different parts of the proof. A typical proof in q-analysis looks as follows:

Theorem

$$ A=B \quad \mbox{\textit{or}}\quad A\cong{B}. $$
(∗)

Here, ≅ means formal equality. We give a criterion for the validity of formula ().

We introduce the fundamental concept of infinity (see Section 3.7) and make a comparison with nonstandard analysis. Throughout the whole book, we make a comparison with the units of physics to entice this important group of scientists. We make a complete list of analogies between the q-difference and q-sum operators and the differentiation or integration operator. We present the first q-functions in order to facilitate the description of the various schools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrews, G.E.: On the q-analog of Kummer’s theorem and applications. Duke Math. J. 40, 525–528 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appell, P., Kampé de Fériet, J.: Fonctions Hypergéométriques et Hypersphériques. Paris (1926)

    Google Scholar 

  3. Brychkov, Y.: Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  4. Buschman, R.G., Srivastava, H.M.: Series identities and reducibility of Kampé de Fériet functions. Math. Proc. Camb. Philos. Soc. 91(3), 435–440 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlitz, L.: q-Bernoulli numbers and polynomials. Duke Math. J. 15, 987–1000 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cigler, J.: Operatormethoden für q-Identitäten. Monatshefte Math. 88, 87–105 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cigler, J.: Finite Differences (Differenzenrechnung). Vienna (2001) (German)

    Google Scholar 

  8. Erdelyi, A. (ed.): Higher Transcendental Functions. Vol. I. Based, in part, on notes left by Harry Bateman and compiled by the Staff of the Bateman Manuscript Project (Repr. of the original 1953 edition publ. by McGraw-Hill Book Company, Inc., New York).

    Google Scholar 

  9. Ernst, T.: The history of q-calculus and a new method. U.U.D.M. Report 2000:16, ISSN 1101-3591, Department of Mathematics, Uppsala University (2000)

    Google Scholar 

  10. Ernst, T.: A new method for q-calculus. Uppsala Dissertations (2002)

    Google Scholar 

  11. Ernst, T.: A method for q-calculus. J. Nonlinear Math. Phys. 10(4), 487–525 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ernst, T.: Some results for q-functions of many variables. Rend. Semin. Mat. Univ. Padova 112, 199–235 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Ernst, T.: q-Generating functions for one and two variables. Simon Stevin 12(4), 589–605 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Ernst, T.: q-Bernoulli and q-Euler polynomials, an umbral approach. Int. J. Differ. Equ. 1(1), 31–80 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Ernst, T.: q-analogues of some operational formulas. Algebras Groups Geom. 23(4), 354–374 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Ernst, T.: A renaissance for a q-umbral calculus. In: Proceedings of the International Conference, Munich, Germany, 25–30 July 2005, pp. 178–188. World Scientific, Singapore (2007)

    Google Scholar 

  17. Ernst, T.: Some new formulas involving Γ q functions. Rend. Semin. Mat. Univ. Padova 118, 159–188 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Ernst, T.: q-calculus as operational algebra. In: Ruffing, A., et al. (eds.) Communications of the Laufen Colloquium on Science. Laufen, Austria, April 1–5, 2007. Berichte aus der Mathematik, vol. 7, pp. 1–31. Shaker, Aachen (2007).

    Google Scholar 

  19. Ernst, T.: The different tongues of q-calculus. Proc. Est. Acad. Sci. 57(2), 81–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ernst, T.: q-Stirling numbers, an umbral approach. Adv. Dyn. Syst. Appl. 3(2), 251–282 (2008)

    MathSciNet  Google Scholar 

  21. Ernst, T.: Motivation for introducing q-complex numbers. Adv. Dyn. Syst. Appl. 3(1), 107–129 (2008). Special Volume in Honor of Allan Peterson

    MathSciNet  Google Scholar 

  22. Ernst, T.: Examples of a q-umbral calculus. Adv. Stud. Contemp. Math. 16(1), 1–22 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Ernst, T.: Die Jacobi-Gudermann-Glaisherschen elliptischen Funktionen nach Heine. Hadron. J. 33, 273–302 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ernst, T.: Sur les polynômes q-Hermite de Cigler. Algebras Groups Geom. 27, 121–142 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Ernst, T.: q-deformed matrix pseudo-groups. Royal Flemish Academy of Belgium, 151–162 (2010)

    Google Scholar 

  26. Ernst, T.: Zur Theorie der Γ q -Funktion. Proc. Jangjeon Math. Soc. 14, 91–113 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Ernst, T.: q-analogues of general reduction formulas by Buschman and Srivastava and an important q-operator reminding of MacRobert. Demonstr. Math. 44, 285–296 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Ernst, T.: Introduction to q-complex analysis, together with the q-complex numbers \(\mathbb{C}_{\oplus_{q}}\) (2011, submitted)

    Google Scholar 

  29. Exton, H.: Multiple Hypergeometric Functions and Applications. Mathematics and Its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [Wiley, Inc.], New York, 312 pp. (1976)

    Google Scholar 

  30. Exton, H.: Q-Hypergeometric Functions and Applications. Ellis Horwood, Chichester; Halsted Press [Wiley, Inc.], New York (1983)

    MATH  Google Scholar 

  31. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  32. Gauß, C.F.: Summatio quarundam serierum singularium. Opera 2, 16–17 (1876)

    Google Scholar 

  33. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Edited and revised by D.R. Heath-Brown and J.H. Silverman. With a foreword by Andrew Wiles, 6th edn. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  34. Heine, E.: Über die Reihe 1+[(1−q α)(1−q β)]/[(1−q)(1−q γ)]x+[(1−q α)(1−q α+1)(1−q β)(1−q β+1)]/[(1−q)(1−q 2)(1−q γ)(1−q γ+1)]x 2+…. J. Reine Angew. Math. 32, 210–212 (1846)

    Article  MATH  Google Scholar 

  35. Heine, E.: Untersuchungen über die Reihe 1+[(1−q α)(1−q β)]/[(1−q)(1−q γ)]x+[(1−q α)(1−q α+1)(1−q β)(1−q β+1)]/[(1−q)(1−q 2)(1−q γ)(1−q γ+1)]x 2+…. J. Reine Angew. Math. 34, 285–328 (1847)

    Article  MATH  Google Scholar 

  36. Henrici, P.: Applied and Computational Complex Analysis, vol. 2. Special Functions–Integral Transforms–Asymptotics–Continued Fractions. Wiley Interscience, New York (1977)

    MATH  Google Scholar 

  37. Horn, J.: Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen. Math. Ann. 34, 544–600 (1889)

    Article  MathSciNet  Google Scholar 

  38. Jacobi, C.G.J.: Fundamenta Nova. Königsberg (1829)

    Google Scholar 

  39. Jordan, Ch.: Calculus of Finite Differences, 3rd edn. Chelsea Publishing Co., New York (1950)

    MATH  Google Scholar 

  40. Koornwinder, T.: Jacobi functions as limit cases of q-ultraspherical polynomials. J. Math. Anal. Appl. 148(1), 44–54 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Landers, D., Rogge, L.: Nichtstandard Analysis. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  42. Milne-Thomson, L.M.: The Calculus of Finite Differences. Macmillan and Co., Ltd., London (1951)

    Google Scholar 

  43. Pringsheim, A.: Vorlesungen über Zahlen- und Funktionenlehre. II, 2: Eideutige Analytische Funktionen, vol. XIV, pp. 625–1224. B.G. Teubner, Leipzig (1932)

    MATH  Google Scholar 

  44. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series. More Special Functions, vol. 3. Gordon and Breach Science Publishers, New York (1990). Translated from the Russian by G.G. Gould

    Google Scholar 

  45. Rainville, E.D.: Special Functions. Chelsea Publishing Co., Bronx (1971). Reprint of 1960 first edition

    MATH  Google Scholar 

  46. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  47. Schwatt, I.J.: An Introduction to the Operations with Series. The Press of the University of Pennsylvania, Philadelphia (1924)

    MATH  Google Scholar 

  48. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge (1966)

    Google Scholar 

  49. Srivastava, H.M., Jain, V.K.: q-series identities and reducibility of basic double hypergeometric functions. Can. J. Math. 38(1), 215–231 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood, New York (1985)

    MATH  Google Scholar 

  51. Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Ellis Horwood Series: Mathematics and Its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [Wiley, Inc.], New York (1984)

    MATH  Google Scholar 

  52. Vilenkin, N.J., Klimyk, A.U.: Representations of Lie Groups and Special Functions, vol. 3. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Ernst, T. (2012). Introduction. In: A Comprehensive Treatment of q-Calculus. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0431-8_1

Download citation

Publish with us

Policies and ethics