Skip to main content

Combinatorial 2-truncated Cubes and Applications

  • Chapter
  • First Online:

Part of the book series: Progress in Mathematics ((PM,volume 299))

Abstract

We study a class of simple polytopes, called 2-truncated cubes. These polytopes have remarkable properties and, in particular, satisfy Gal’s conjecture. Well-known polytopes (flag nestohedra, graph-associahedra and graph-cubeahedra) are 2-truncated cubes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Buchstaber, “Ring of simple polytopes and differential equations”, Trudy Matematicheskogo Instituta imeni V.A. Steklova 263 (2008) 18–43.

    Google Scholar 

  2. V.M. Buchstaber and T.E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  3. M. Carr and S. Devadoss, “Coxeter complexes and graph associahedra”, Topology and its Applications 153 (2006) 2155–2168.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Ceballos and G. Ziegler, “Three non-equivalent realizations of the associahedron”, http://arXiv.org/abs/1006.3487 .

  5. F. Chapoton, S. Fomin, and A. Zelevinsky, “Polytopal realizations of generalized associahedra”, Canad. Math. Bull. 45 (2002) 537–566.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Charney and M. Davis, “The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold”, Pacific J. Math. 171 (1995) 117–137.

    MathSciNet  MATH  Google Scholar 

  7. C.D. Concini and C. Procesi, “Wonderful models of subspace arrangements”, Selecta Mathematica (N.S.) 1 (1995) 459–494.

    Google Scholar 

  8. M. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J. 62 (1991)417–451.

    Article  MathSciNet  MATH  Google Scholar 

  9. S.L. Devadoss, T. Heath, and W. Vipismakul, “Deformations of bordered surfaces and convex polytopes”, Notices of the AMS 58 (2011) 530–541.

    MathSciNet  MATH  Google Scholar 

  10. N. Erokhovets, presented in a seminar at Moscow State University.

    Google Scholar 

  11. E.-M. Feichtner and I. Mueller, “On the topology of nested set complexes”, Proceedings of American Mathematical Society 133 (2005) 999–1006.

    Article  MATH  Google Scholar 

  12. E.-M. Feichtner and B. Sturmfels, “Matroid polytopes, nested sets, and Bergman fans”, Portu- galiae Mathematica (N.S.) 62 (2005) 437–468.

    Google Scholar 

  13. S. Fomin and A. Zelevinsky, “Y-systems and generalized associahedra”, Annals of Math. 158 (2003) 977–1018.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Gal, “Real root conjecture fails for five- and higher-dimensional spheres”, Discrete & Computational Geometry 34 (2005) 269–284.

    Article  MathSciNet  MATH  Google Scholar 

  15. I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994.

    Google Scholar 

  16. M.A. Gorsky, “Proof of Gal’s conjecture for the series of generalized associahedra”, Russian Math. Surveys 65 (2010) 1178–1180.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to the Theory ofToric Varieties, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  18. T. Panov, N. Ray, and R. Vogt, “Colimits, Stanley-Reisner algebras, and loop spaces”, in In Categorical Decomposition Techniques in Algebraic Topology, Progress in Mathematics, vol. 215, Birkhäuser, 2004, 261–291.

    Google Scholar 

  19. A. Postnikov, “Permutohedra, associahedra, and beyond”, International Mathematics Research Notices (2009) 1026–1106.

    Google Scholar 

  20. A. Postnikov, V. Reiner, and L. Williams, “Faces of generalized permutohedra”, Documenta Mathematica 13 (2008) 207–273.

    MathSciNet  MATH  Google Scholar 

  21. A. Zelevinsky, “Nested set complexes and their polyhedral realizations”, Pure and Applied Mathematics Quarterly 2 (2006) 655–671.

    MathSciNet  MATH  Google Scholar 

  22. G. Ziegler, Lectures on Polytopes, Springer-Verlag, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Buchstaber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Buchstaber, V.M., Volodin, V.D. (2012). Combinatorial 2-truncated Cubes and Applications. In: Müller-Hoissen, F., Pallo, J., Stasheff, J. (eds) Associahedra, Tamari Lattices and Related Structures. Progress in Mathematics, vol 299. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0405-9_9

Download citation

Publish with us

Policies and ethics