Around and Beyond the Square of Opposition

Part of the series Studies in Universal Logic pp 175-189

Pluralism in Logic: The Square of Opposition, Leibniz’ Principle of Sufficient Reason and Markov’s Principle

* Final gross prices may vary according to local VAT.

Get Access


According to the present pluralism in mathematical logic, I translate from classical logic to non-classical logic the predicates of the classical square of opposition. A similar unique structure is obtained. In order to support this new logical structure, I investigate on the rich legacy of the non-classical arguments presented by ingenuity by several authors of scientific theories. A comparative analysis of their ways of arguing shows that each of these theories is severed in two parts; the former one proves a universal predicate by an ad absurdum proof. This conclusion of every theory results to be formalised by the A thesis of the new logical structure. Afterwards, this conclusion is changed in the corresponding affirmative predicate, which in the latter part plays the role of a new hypothesis for a deductive development. This kind of change is the same suggested by Leibniz’ principle of sufficient reason. Instead, Markov’s principle results to be a weaker logical change, from the intuitionist thesis I in the affirmative thesis I. The relevance of all the four theses of the new logical structure is obtained by studying all the conversion implications of intuitionist predicates. In the Appendix, I analyse as an example of the above theories, Markov’s presentation of his theory of real numbers.


Square of opposition Non-classical logic Doubly negated statements Logical principles

Mathematics Subject Classification

01A20 03A05 03B20