Skip to main content

Generalizing Cantor’s CBT Proof

  • Chapter
  • First Online:
  • 1437 Accesses

Part of the book series: Science Networks. Historical Studies ((SNHS,volume 45))

Abstract

Following his statement of CBT, in its single-set formulation, for sets of the power of (II), as a corollary to the Fundamental Theorem, Cantor said (Cantor 1932 p 201, Ewald 1996 vol 2 p 912 [12]):

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Hallett (1984 §2.2) attempted to obtain such generalization but concluded (p 74) that it was not possible.

  2. 2.

    Alone to state a view similar to ours, but with actually no details to support his thesis, is Tait (2005 p 164).

  3. 3.

    The convention to denote by ω γ the initial number of the (γ + 2)th number-class (Jourdain 1904b p 295 footnote †) will not do for number-classes from the (ω + 1)th on.

  4. 4.

    The confused notation originated with Cantor in the following quotation.

  5. 5.

    Cantor did not use the terms ‘regular number’ and ‘singular number’, introduced by Hausdorff (1914a p 130).

  6. 6.

    Cantor is using here the term ‘transfinite number’ which gained popularity after Jourdain used “transfinite numbers” in the title of his translation (Cantor 1915) of Cantor 1895/7, instead of Cantor’s Transfiniten Mengenlehre. But Cantor preferred in his 1897 the term ‘ordinal number’ and in Grundlagen he preferred unendlichen realen Zahlen, which Ewald translated into ‘infinite integers’ (Ewald 1996 vol 2 pp 883 [7], 908 [7]). We prefer to use ‘infinite numbers’ to stress that on the one hand we are attached to the Grundlagen presentation and on the other hand to the ‘number’ attribute of 1897.

  7. 7.

    Cantor 1932 p 443, van Heijenhoort 1967 p 113, Grattan-Guinness 1974 p 128, Ewald 1996 vol 2 p 931, Meschkowski-Nilson 1991 p 407. In the first two sources the letter is dated July 28. See the Grattan-Guinness reference.

  8. 8.

    Hessenberg says that his proof follows the proof of Bernstein (namely – Borel, see Sect. 11.2) with some changes. Actually his proof is similar to Peano’s first (inductive) proof (see Sect. 20.1), published in March 1906. Another case of simultaneity of proofs.

  9. 9.

    U1 is the empty set. We assume by convention that when we use U k , we have κ > 1.

  10. 10.

    Compare to Zermelo’s three principles of complete induction in theorems I, III, V, of his 1909 paper (p 192).

  11. 11.

    That the part cannot be greater than the whole is provided by CBT.

  12. 12.

    The definition of the sum of numbers from U γ will be discussed below.

  13. 13.

    Here and in the rest of this paragraph, the + sign does not signify the sum operation but just the stage in which the number is generated by the first generation principle.

  14. 14.

    Strangely, Zermelo did not refer in his comment also to the proof in Grundlagen.

  15. 15.

    Cantor met Dedekind twice during September 1882; first in Harzburg, their favorite vacation retreat, and then in Eisenach, in a gathering of mathematicians.

  16. 16.

    Manifold (Mannigfaltig) was Cantor’s term for set (Menge) before Grundlagen.

  17. 17.

    The crucial step was probably a scheme for the proof of the Union Theorem.

  18. 18.

    It does not make much sense to assume that the entire construction of Grundlagen was developed in that month, as some writers have suggested, because of the wealth of the ideas and technical details in Grundlagen. Cf. Ferreiro’s 1995 p 41, Meschkowski-Nilson 1991 p 90 (3).

  19. 19.

    Reference is here made to Cantor’s 1880 paper, 1882 paper and 1883 paper, parts 2, 3, 4, in the series Ueber unendliche, lineare Punkmannichfaltigkeiten, Cantor 1932 pp 145, 149, 157, respectively.

  20. 20.

    In 1883 Grundlagen Cantor denoted the result of the following definition by βα, but he reversed the notation in 1895 Beiträge. We use the latter convention that prevailed.

References

  • Cantor G. Über unendliche, lineare Punktmannigfalitgkeiten, 6, Mathematische Annalen. 1884;23:453–88. Cantor 1932, 210–46.

    Google Scholar 

  • Cantor G. Beiträge zur Begründung der transfiniten Mengenlehre, (‘1895 Beiträge’). Cantor 1932;282–311. English translation: Cantor 1915.

    Google Scholar 

  • Cantor G. Beiträge zur Begründung der transfiniten Mengenlehre, (‘1897 Beiträge’). Cantor 1932;312–56. English translation: Cantor 1915.

    Google Scholar 

  • Cantor G. Contributions to the founding of the theory of Transfinite Numbers, English version of Cantor 1895 and Cantor 1897, translated by Jourdain PEB. Dover Publications Inc.

    Google Scholar 

  • Cantor G. Gesammelte Abhandlungen Mathematischen und philosophischen Inhalts, edited by Zermelo E. Springer, Berlin 1932. http://infini.philosophons.com/.

  • Cavailles J. Philosophie mathématique. Paris: Hermann; 1962.

    MATH  Google Scholar 

  • Dauben JW. Georg Cantor. His Mathematics and the Philosophy of the Infinite, Cambridge MA: Harvard University Press; 1979. Reprinted by Princeton University Press, 1990.

    Google Scholar 

  • Dugac P. Richard Dedekind et les fondements des mathématiques. Paris: Vrin; 1976.

    MATH  Google Scholar 

  • Ewald W. editor. From Kant to Hilbert: a source book in the foundations of mathematics. 2 vols. Oxford: Clarendon Press; 1996.

    Google Scholar 

  • Felscher W. Did Cantor prove the Schröder-Bernstein theorem?, http://sunsite.utk.edu/math_archives/.http/hypermail/historia/mar99/0148.html.

  • Ferreirós J. ‘What fermented in me for years’: Cantor’s discovery of transfinite numbers. Hist Math. 1995;22:33–42.

    Article  MATH  Google Scholar 

  • Ferreirós J. Labyrinth of thought. A history of set theory and its role in modern mathematics. Basel/Boston/Berlin: Birkhäuser; 1999.

    MATH  Google Scholar 

  • Fraenkel AA. Abstract set theory. 3rd ed. Amsterdam: North Holland; 1966.

    Google Scholar 

  • Grattan-Guinness I. The rediscovery of the Cantor-Dedekind correspondence. Jahresbericht der Deutschen Mathematiker-Vereiningung. 1974;76:104–39.

    MathSciNet  MATH  Google Scholar 

  • Grattan-Guinness I. The search for mathematical roots, 1870–1940: logics, set theories and the foundations of mathematics from Cantor through Russell and Gödel, Princeton University Press; 2000.

    Google Scholar 

  • Hallett M. Cantorian set theory and limitation of size. Oxford: Clarendon Press; 1984.

    Google Scholar 

  • Hausdorff F. Grundzuge der Mengenlehre, Berlin; 1914a, reprinted by Chelsea, New York; 1949.

    Google Scholar 

  • van Heijenoort J. From Frege to Gödel. Cambridge, MA: Harvard University Press; 1967.

    MATH  Google Scholar 

  • Hessenberg G. Grundbegriffe der Mengenlehre. Abhandlungen der Friesschen Schule. 1906;2(1):479–706. reprinted Göttingen, Vardenhoeck & Ruprecht 1906.

    Google Scholar 

  • Jourdain PEB. On the transfinite cardinal numbers of number-classes in general. Philosophical Magazine (6). 1904b;7(39):294–303.

    Article  MATH  Google Scholar 

  • Jourdain PEB. The multiplication of alephs. Mathematische Annalen. 1908a;65:506–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Levy A. Basic set theory, Dover Publications Inc 2002. Originally published by Springer in 1979.

    Google Scholar 

  • Lindenbaum A, Tarski A. Communication sur les recherches de la thèorie des ensembles. Comptes rendu des séances de la société Polonaise de Mathematique section Varsovie Annales de la Societe Polonaise Mathematique. 1926;19:299–330.

    MATH  Google Scholar 

  • Medvedev FA. 1966. Ранняя история теоремы эквивалентности (Early history of the equivalence theorem), Ист.-мат. исслед. (Research in the history of mathematics) 1966;17:229–46.

    Google Scholar 

  • Meschkowski H, Nilsen W. Georg Cantor: briefe. Berlin: Springer; 1991.

    Google Scholar 

  • Schröder E. Über Zwei Defitionen der Endlichkeit und G. Cantorsche Sätze, Nova Acta. Abhandlungen der Kaiserlichen Leopold-Carolinschen deutchen Akademie der Naturfoscher. 1898;71:301–62.

    Google Scholar 

  • Tait WW. Book review on Potter 2004. History and philosophy of logic. 2005;26(2):164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie Hinkis .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Hinkis, A. (2013). Generalizing Cantor’s CBT Proof. In: Proofs of the Cantor-Bernstein Theorem. Science Networks. Historical Studies, vol 45. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0224-6_2

Download citation

Publish with us

Policies and ethics