Skip to main content

Investigational Studies of rHuG-CSF to Promote the Regeneration of Nonhematopoietic Tissues

  • Chapter
  • First Online:
  • 949 Accesses

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Granulocyte colony-stimulating factor (G-CSF) is a 19.6-kDa glycoprotein hormone secreted by monocytes, macrophages, fibroblasts, and endothelial cells and is the primary physiologic regulator of neutrophilic granulocyte production. It exerts its earliest actions on myeloid-restricted hematopoietic progenitor cells that reside in the bone marrow, stimulating their proliferation and differentiation through several developmental stages (myeloblasts, promyelocytes, myelocytes, and metamyelocytes), culminating in the release of terminally differentiated neutrophils into the peripheral blood. G-CSF also promotes the survival of mature neutrophils and enhances their effector functions required for a successful immune response against bacterial infection [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Molineux G, Dexter TM (1998) Biology of G-CSF. In: Morstyn G, Dexter TM, Foote M (eds) Filgrastim in clinical practice, 2nd edn. Marcel Dekker, New York, pp 1–41

    Google Scholar 

  2. Meisenberg BR, Davis TA, Melaragno AJ et al (1992) A comparison of therapeutic schedules for administering granulocyte colony-stimulating factor to nonhuman primates after high-dose chemotherapy. Blood 79:2267–2272

    PubMed  CAS  Google Scholar 

  3. Lieschke GJ, Grail D, Hodgson G et al (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84:1737–1746

    PubMed  CAS  Google Scholar 

  4. Welte K, Gabrilove J, Bronchud MH et al (1996) Filgrastim (r-metHuG-CSF): the first 10 years. Blood 88:1907–1929

    PubMed  CAS  Google Scholar 

  5. Schäbitz WR, Kollmar R, Schwaninger M et al (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  PubMed  Google Scholar 

  6. Oishi A, Otani A, Sasahara M et al (2008) Granulocyte colony-stimulating factor protects retinal photoreceptor cells against light-induced damage. Invest Ophthalmol Vis Sci 49:5629–5635

    Article  PubMed  Google Scholar 

  7. Shimoji K, Yuasa S, Onizuka T et al (2010) G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs. Cell Stem Cell 6:227–237

    Article  PubMed  CAS  Google Scholar 

  8. Schneider A, Krüger C, Steigleder T et al (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098

    Article  PubMed  CAS  Google Scholar 

  9. Harada M, Qin Y, Takano H et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311

    Article  PubMed  CAS  Google Scholar 

  10. Kuhlmann MT, Kirchhof P, Klocke R et al (2006) G-CSF/SCF reduces inducible arrhythmias in the infracted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 203:87–97

    Article  PubMed  CAS  Google Scholar 

  11. Solaroglu I, Jadhav V, Zhang JH (2007) Neuroprotective effect of granulocyte-colony stimulating factor. Front Biosci 12:712–724

    Article  PubMed  CAS  Google Scholar 

  12. Sanchez-Ramos J, Song S, Sava V et al (2009) Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s Mice. Neuroscience 163:55–72

    Article  PubMed  CAS  Google Scholar 

  13. de Bruin C, Lincoln P, Hartley C, Shehabilen A, Van G, Szilvassy SJ (2010) Most purported antibodies to the human granulocyte colony-stimulating factor receptor are not specific. Exp Hematol 38:1025–1035

    Google Scholar 

  14. Lyman GH (2005) Pegfilgrastim: a granulocyte colony-stimulating factor with sustained duration of action. Expert Opin Biol Ther 5:1635–1646

    Article  PubMed  CAS  Google Scholar 

  15. Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  16. Paczkowska E, Larysz B, Rzeuski R et al (2005) Human hematopoietic stem/progenitor-enriched CD34+ cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction. Eur J Haematol 75:461–467

    Article  PubMed  CAS  Google Scholar 

  17. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infracted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  18. Orlic D, Kajstura J, Chimenti S et al (2001) Mobilized bone marrow cells repair the infracted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  PubMed  CAS  Google Scholar 

  19. Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  20. Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  PubMed  CAS  Google Scholar 

  21. Wagers AJ, Sherwood RI, Christensen JL et al (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  PubMed  CAS  Google Scholar 

  22. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  PubMed  CAS  Google Scholar 

  23. Nygren JM, Jovinge S, Breitbach M et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  PubMed  CAS  Google Scholar 

  24. Minatoguchi S, Takemura G, Chen X-H et al (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109:2572–2580

    Article  PubMed  CAS  Google Scholar 

  25. Werneck-de-Castro JPS, Costa-e-Sousa RH, de Oliveira PF et al (2006) G-CSF does not improve systolic function in a rat model of acute myocardial infarction. Basic Res Cardiol 101:494–501

    Article  PubMed  CAS  Google Scholar 

  26. Takahama H, Minamino T, Hirata A et al (2006) Granulocyte colony-stimulating factor mediates cardioprotection against ischemia/reperfusion injury via phosphatidylinositol-3-kinase/Akt pathway in canine hearts. Cardiovasc Drugs Ther 20:159–165

    Article  PubMed  CAS  Google Scholar 

  27. Li Y, Fukuda N, Yokoyama S-I et al (2006) Effects of G-CSF on cardiac remodeling and arterial hyperplasia in rats. Eur J Pharmacol 549:98–106

    Article  PubMed  CAS  Google Scholar 

  28. Lee SS, Naqvi TS, Forrester J et al (2007) The effect of granulocyte colony stimulating factor on regional and global myocardial function in the porcine infarct model. Int J Cardiol 116:225–230

    Article  PubMed  Google Scholar 

  29. Okada H, Takemura G, Li Y et al (2008) Effect of a long-term treatment with a low-dose granulocyte colony-stimulating factor on post-infarction process in the heart. J Cell Mol Med 12:1272–1283

    Article  PubMed  CAS  Google Scholar 

  30. Yagi T, Fukuda K, Fujita J et al (2008) G-CSF augments small vessel and cell density in canine myocardial infarction. Keio J Med 57:139–149

    Article  PubMed  Google Scholar 

  31. De Silva R, Raval AN, Hadi M et al (2008) Intracoronary infusion of autologous mononuclear cells from bone marrow or granulocyte colony-stimulating factor-mobilized apheresis product may not improve remodeling, contractile function, perfusion, or infarct size in a swine model of large myocardial infarction. Eur Heart J 29:1772–1782

    Article  PubMed  Google Scholar 

  32. Klocke R, Kuhlmann MT, Scobioala S et al (2008) Granulocyte colony-stimulating factor (G-CSF) for cardio- and cerebrovascular regenerative applications. Curr Med Chem 15:968–977

    Article  PubMed  CAS  Google Scholar 

  33. Vertesaljai M, Piroth Z, Fontos G et al (2008) Drugs, gene transfer, signaling factors: a bench to bedside approach to myocardial stem cell therapy. Heart Fail Rev 13:227–244

    Article  PubMed  Google Scholar 

  34. Ueda K, Takano H, Hasegawa H et al (2006) Granulocyte colony stimulating factor directly inhibits myocardial ischemia-reperfusion injury through Akt-endothelial NO synthase pathway. Arteroscler Thromb Vasc Biol 26:e108–e113

    Article  CAS  Google Scholar 

  35. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413

    Article  PubMed  CAS  Google Scholar 

  36. Kawada H, Fujita J, Kinjo K et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587

    Article  PubMed  CAS  Google Scholar 

  37. Cheng Z, Liu X, Ou L et al (2008) Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovasc Drugs Ther 22:363–371

    Article  PubMed  CAS  Google Scholar 

  38. Bussolino F, Wang JM, Defilippi P et al (1989) Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473

    Article  PubMed  CAS  Google Scholar 

  39. Bussolino F, Ziche M, Wang JM et al (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995

    Article  PubMed  CAS  Google Scholar 

  40. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed  CAS  Google Scholar 

  41. Shojaei F, Wu X, Zhong C et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  PubMed  CAS  Google Scholar 

  42. Shojaei F, Zhong C, Wu X et al (2008) Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol 18:372–378

    Article  PubMed  CAS  Google Scholar 

  43. Ohki Y, Heissig B, Sato Y et al (2005) Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J 19:2005–2007

    PubMed  CAS  Google Scholar 

  44. Capoccia B, Sheperd RM, Link DC (2006) G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 108:2438–2445

    Article  PubMed  CAS  Google Scholar 

  45. Sugano Y, Anzai T, Yoshikawa T et al (2005) Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovasc Res 65:446–456

    Article  PubMed  CAS  Google Scholar 

  46. Ince H, Valgimigli M, Petzsch M et al (2008) Cardiovascular events and re-stenosis following administration of G-CSF in acute myocardial infarction: systematic review and meta-analysis. Heart 94:610–616

    Article  PubMed  CAS  Google Scholar 

  47. Zohlnhöfer D, Dibra A, Koppara T et al (2008) Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol 51:1429–1437

    Article  PubMed  Google Scholar 

  48. Fan L, Chen L, Chen X et al (2008) A meta-analysis of stem cell mobilization by granulocyte colony-stimulating factor in the treatment of acute myocardial infarction. Cardiovasc Drugs Ther 22:45–54

    Article  PubMed  CAS  Google Scholar 

  49. Ripa RS, Kastrup J (2008) G-CSF therapy with mobilization of bone marrow stem cells for myocardial recovery after acute myocardial infarction – a relevant treatment? Exp Hematol 36:681–686

    Article  PubMed  CAS  Google Scholar 

  50. Abdel-Latif A, Bolli R, Zuba-Surma EK et al (2008) Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J 156:216–226

    Article  PubMed  CAS  Google Scholar 

  51. Zohlnhöfer D, Ott I, Mehilli J et al (2006) Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 295:1003–1010

    Article  PubMed  Google Scholar 

  52. Ripa RS, Jørgensen E, Wang Y et al (2006) Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 113:1983–1992

    Article  PubMed  CAS  Google Scholar 

  53. Engelmann MG, Theiss HD, Hennig-Theiss C et al (2006) Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI 9granulocyte colony-stimulating factor ST-segment elevation myocardial infarction) trial. J Am Coll Cardiol 48:1712–1721

    Article  PubMed  CAS  Google Scholar 

  54. Ellis SG, Penn MS, Bolwell B et al (2006) Granulocyte colony stimulating factor in patients with large acute myocardial infarction: results of a pilot dose-escalation randomized trial. Am Heart J 152:1051.e9–1051.e14

    Article  Google Scholar 

  55. Ince H, Petzsch M, Kleine HD et al (2005) Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation 112:3097–3106

    Article  PubMed  CAS  Google Scholar 

  56. Beohar N, Flaherty JD, Davidson CJ et al (2007) Granulocyte-colony stimulating factor administration after myocardial infarction in a porcine ischemia-reperfusion model: functional and pathological effects of dose timing. Catheter Cardiovasc Interv 69:257–265

    Article  PubMed  Google Scholar 

  57. Engelmann MG, Theiss HD, Theiss C et al (2008) G-CSF in patients suffering from late revascularized ST elevation myocardial infarction: analysis on the timing of G-CSF administration. Exp Hematol 36:703–709

    Article  PubMed  CAS  Google Scholar 

  58. Lehrke S, Mazhari R, Durand DJ et al (2006) Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling. Circ Res 99:553–560

    Article  PubMed  CAS  Google Scholar 

  59. Kidd PM (2009) Integrated brain restoration after ischemic stroke – medical management, risk factors, nutrients, and other interventions for managing inflammation and enhancing brain plasticity. Alt Med Rev 14:14–35

    Google Scholar 

  60. Zhao L-R, Navalitloha Y, Singhal S et al (2007) Hematopoietic growth factors pass through the blood-brain barrier in intact rats. Exp Neurol 204:569–573

    Article  PubMed  CAS  Google Scholar 

  61. Shyu W-C, Lin S-Z, Yang H-I et al (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110:1847–1854

    Article  PubMed  CAS  Google Scholar 

  62. Gibson CL, Bath PMW, Murphy SP (2005) G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice. J Cerebral Blood Flow Metab 25:431–439

    Article  CAS  Google Scholar 

  63. Schneider A, Wysocki R, Pitzer C et al (2006) An extended window of opportunity for G-CSF treatment in cerebral ischemia. BMC Biol 4:36–43

    Article  PubMed  Google Scholar 

  64. Popa-Wagner A, Stöcker K, Balseanu AT et al (2010) Effects of granulocyte-colony stimulating factor after stroke in aged rats. Stroke 41:1027–1031

    Article  PubMed  CAS  Google Scholar 

  65. Matchett GA, Calinisan JB, Matchett GC et al (2007) The effect of granulocyte-colony stimulating factor in global cerebral ischemia in rats. Brain Res 1136:200–207

    Article  PubMed  CAS  Google Scholar 

  66. Zhao L-R, Berra HH, Duan W-M et al (2007) Beneficial effects of hematopoietic growth factor therapy in chronic ischemic stroke in rats. Stroke 38:2804–2811

    Article  PubMed  CAS  Google Scholar 

  67. Taguchi A, Wen Z, Myojin K et al (2007) Granulocyte colony-stimulating factor has a negative effect on stroke outcome in a murine model. Eur J Neurosci 26:126–133

    Article  PubMed  Google Scholar 

  68. Ren JM, Finklestein SP (2005) Growth factor treatment of stroke. Curr Drug Targets CNS Neurol Dis 4:121–125

    Article  CAS  Google Scholar 

  69. England TJ, Gibson CL, Bath PWM (2009) Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: a systematic review. Brain Res Rev 62:71–82

    Article  PubMed  CAS  Google Scholar 

  70. Minnerup J, Heidrich J, Wellmann J et al (2008) Meta-analysis of the efficacy of granulocyte-colony stimulating factor in animal models of focal cerebral ischemia. Stroke 39:1855–1861

    Article  PubMed  CAS  Google Scholar 

  71. Lu C-Z, Xiao B-G (2006) G-CSF and neuroprotection: a therapeutic perspective in cerebral ischemia. Biochem Soc Trans 34:1327–1333

    Article  PubMed  CAS  Google Scholar 

  72. Yanqing Z, Yu-Min L, Jian Q et al (2006) Fibronectin and neuroprotective effect of granulocyte colony-stimulating factor in focal cerebral ischemia. Brain Res 1098:161–169

    Article  PubMed  Google Scholar 

  73. Sakai T, Johnson KJ, Murozono M et al (2001) Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential to skin-wound healing and hemostasis. Nat Med 7:324–330

    Article  PubMed  CAS  Google Scholar 

  74. Komine-Kobayashi M, Zhang N, Liu M et al (2006) Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab 26:402–413

    Article  PubMed  CAS  Google Scholar 

  75. Solarglu I, Cahill J, Tsubokawa T et al (2009) Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res 31:167–172

    Article  Google Scholar 

  76. Jung K-H, Chu K, Lee S-T et al (2006) G-CSF protects human cerebral hybrid neurons against in vitro ischemia. Neurosci Lett 394:168–173

    Article  PubMed  CAS  Google Scholar 

  77. Hartung T (1998) Anti-inflammatory effects of granulocyte colony-stimulating factor. Curr Opin Hematol 5:221–225

    Article  PubMed  CAS  Google Scholar 

  78. Hartung T, Döcke W-D, Gantner F et al (1995) Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. Blood 85:2482–2489

    PubMed  CAS  Google Scholar 

  79. So H, Fink MP (1999) Counter regulatory control of the acute inflammatory response: granulocyte colony-stimulating factor has anti-inflammatory properties. Crit Care Med 27:1019–1021

    Article  Google Scholar 

  80. Zavala F, Abad S, Ezine S et al (2002) G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J Immunol 168:2011–2019

    PubMed  CAS  Google Scholar 

  81. Boutin H, LeFeuvre RA, Horai R et al (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21:5528–5534

    PubMed  CAS  Google Scholar 

  82. Kostulas N, Pelidou SH, Kivisäkk P et al (1999) Increased IL-1b, IL-8, and IL-17 mRNA expression in blood mononuclear cells observed in a prospective ischemic stroke study. Stroke 30:2174–2179

    Article  PubMed  CAS  Google Scholar 

  83. Mazzotta G, Sarchielli P, Caso V et al (2004) Different cytokine levels in thrombolysis patients as predictors for clinical outcome. Eur J Neurol 11:377–381

    Article  PubMed  CAS  Google Scholar 

  84. Zhang JJ, Deng M, Zhang Y et al (2006) A short-term assessment of recombinant human granulocyte colony-stimulating factor (RHG-CSF) in treatment of acute cerebral infarction. Cerebrovasc Dis 21(Suppl 4):143

    Google Scholar 

  85. Sprigg N, Bath PM, Zhao L et al (2006) Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke. Stroke 37:2979–2983

    Article  PubMed  CAS  Google Scholar 

  86. Shyu W-C, Lin S-Z, Lee C-C et al (2006) Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ 174:927–933

    Article  PubMed  Google Scholar 

  87. Schäbitz WR, Laage R, Schwab S et al (2008) AX200 (G-CSF) for the treatment of acute ischemic stroke (AXIS). Stroke 39:561

    Google Scholar 

  88. Bath PMW, Sprigg N (2007) Colony stimulating factors (including erythropoietin, granulocyte colony-stimulating factor and analogues) for stroke. Cochrane Database Syst Rev 2:1–24

    Google Scholar 

  89. Tsai K-J, Tsai Y-C, Shen C-K (2007) G-CSF rescues the memory impairment of animal models of Alzheimer’s disease. J Exp Med 204:1273–1280

    Article  PubMed  CAS  Google Scholar 

  90. Hasselblatt M, Jeibmann A, Riesmeier B et al (2007) Granulocyte-colony stimulating factor (G-CSF) and G-CSF receptor expression in human ischemic stroke. Acta Neuropathol 113:45–51

    Article  PubMed  CAS  Google Scholar 

  91. Meuer K, Pitzer C, Teismann P et al (2006) Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease. J Neurochem 97:675–686

    Article  PubMed  CAS  Google Scholar 

  92. Laske C, Stellos K, Stransky E et al (2009) Decreased plasma levels of granulocyte-colony stimulating factor (G-CSF) in patients with early Alzheimer’s disease. J Alzheimers Dis 17:115–123

    PubMed  CAS  Google Scholar 

  93. Maler JM, Spitzer P, Lewczuk P et al (2006) Decreased circulating CD34+ stem cells in early Alzheimer’s disease: evidence for a deficient hematopoietic brain support? Mol Psychiatry 11:1113–1115

    Article  PubMed  CAS  Google Scholar 

  94. Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362

    Article  PubMed  CAS  Google Scholar 

  95. Ravetti MG, Moscato P (2008) Identification of a 5-protein biomarker molecular signature for predicting Alzheimer’s disease. PLoS One 3:e3111. doi:10.1371/journal.pone.0003111

    Article  Google Scholar 

  96. Spiegel A, Shivtiel S, Kalinkovich A et al (2007) Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 8:1123–1131

    Article  PubMed  CAS  Google Scholar 

  97. Katayama Y, Battista M, Kao W-M et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  PubMed  CAS  Google Scholar 

  98. Kalinkovich A, Spiegel A, Shivtiel S et al (2009) Blood-forming stem cells are nervous: direct and indirect regulation of immature CD34+ cells by the nervous system. Brain Behav Immun 23:1059–1065

    Article  PubMed  CAS  Google Scholar 

  99. Diederich K, Sevimli S, Dörr H et al (2009) The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice. J Neurosci 29:11572–11581

    Article  PubMed  CAS  Google Scholar 

  100. Sevimli S, Diederich K, Strecker J-K et al (2009) Endogenous brain protection by granulocyte-colony stimulating factor after ischemic stroke. Exp Neurol 217:328–335

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Szilvassy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Szilvassy, S.J. (2012). Investigational Studies of rHuG-CSF to Promote the Regeneration of Nonhematopoietic Tissues. In: Molineux, G., Foote, M., Arvedson, T. (eds) Twenty Years of G-CSF. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0218-5_16

Download citation

Publish with us

Policies and ethics