Skip to main content

Paclitaxel

  • Chapter
  • First Online:
  • 989 Accesses

Abstract

Biological target: Paclitaxel is a natural polysubstituted macrocyclic compound isolated from the bark of the Pacific yew tree (Taxus brevifolia). It binds to β-tubulin, causing polymerisation of the tubulin, thereby disrupting normal microtubule dynamics required for cell division.

Therapeutic profile: Paclitaxel (Taxol ®) is an anticancer agent with a broad spectrum of activity against tumours that are often refractive to other drugs.

Synthetic highlights: The partial synthesis of paclitaxel was necessary to enhance the availability of the drug substance and avoid unsustainable use of yew trees. Many different synthetic routes have been reported and three inventive pathways for the enantioselective or site-selective approaches to various segments of the paclitaxel molecule are described. These are all promoted by organometal catalytic complexes. Reactions presented include use of the intramolecular Heck reaction in the synthetic pathway to baccatine III; the Sharpless reaction and the introduction of a trifunctional catalyst for biomimetic synthesis of chiral diols; synthesis of the paclitaxel side-chain; and use of a Zr-complex catalyst in the reductive N-deacylation of taxanes to primary amine, the key precursor of paclitaxel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ojima I, Habuš I, Zhao M, Georg GI, Jayasinghe LR (1991) J Org Chem 56:1681–1683

    Article  CAS  Google Scholar 

  2. Holton RA, Somoza C, Kim HB, Liang F, Biedeger RJ, Boatman D, Shindo M, Smith CC, Kim S, Nadizadeh H, Suzuki Y, Tao C, Vu P, Tang S, Zhang O, Murthi KK, Gentile LS, Liu JH (1994) J Am Chem Soc 116:1597–1599

    Article  CAS  Google Scholar 

  3. Nicolau KC, Zhang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Coladourous EA, Paulvannan K, Sorensen EJ (1994) Nature 367:630–634

    Article  Google Scholar 

  4. Nicolau KC, Guy RG (1995) Angew Chem Int Ed 34:2079–2090

    Article  Google Scholar 

  5. Kingston DGI (2000) J Natural Products 63:726–734

    Article  CAS  Google Scholar 

  6. Ojima I, Lin S, Wang T (1999) Curr Med Chem 6:927–954

    PubMed  CAS  Google Scholar 

  7. Horwitz SB (2004) J Nat Prod 67:136–138

    Article  PubMed  CAS  Google Scholar 

  8. Geney R, Sun L, Pera P, Bernacki L, Xia S, Horwitz SB, Simmerling CL, Ojima I (2005) Chem Biol 12:339–348

    Article  PubMed  CAS  Google Scholar 

  9. Yang Y, Alcaraz AA, Snyder JP (2009) J Nat Prod 72:422–429

    Article  PubMed  CAS  Google Scholar 

  10. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) J Am Chem Soc 93:2325–2327

    Article  PubMed  CAS  Google Scholar 

  11. Rennenber R (2007) Biotechnol 2:1207–1209

    Google Scholar 

  12. Pandi M, Manikandan RM (2010) J Biomed Pharmacother 64:48–53

    Article  CAS  Google Scholar 

  13. Ganem B, Franke R (2007) J Org Chem 72:3981–3987

    Article  PubMed  CAS  Google Scholar 

  14. Masters JM, Link JT, Snyder LB, Young WB, Danishefsky SM (1995) Angew Chem Int Ed 34:1723–1726

    Article  CAS  Google Scholar 

  15. Heck RF (1982) Org Reactions 27:345–366

    CAS  Google Scholar 

  16. Geissler H, Beller M, Stark TH (1998) In: Beller M, Bolm C (eds) Transition metals for organic synthesis. Wiley-VCH, NY, 166–214

    Google Scholar 

  17. Danishefsky SJ, Masters JJ, Young WB et al (1996) J Am Chem Soc 118:2843–59

    Article  CAS  Google Scholar 

  18. Narasaka K, Iwasawa N (1998) Chemtracts 11:23–28

    CAS  Google Scholar 

  19. Choudary BM, Chowdary NS, Madhi S, Kantam ML (2001) Angew Chem Int Ed 40:4619–4623

    Article  CAS  Google Scholar 

  20. Choudary BM, Yyothi K, Madhi S, Kantam ML (2002) Adv Synth Catal 344:503–507

    Article  CAS  Google Scholar 

  21. Choudary BM, Chowdary NS, Yyothi K, Kantam ML (2002) J Am Chem Soc 124:5341–5349

    Article  PubMed  CAS  Google Scholar 

  22. Jacobsen EN, Marko I, Mungall WS, Schroder G, Sharpless KB (1988) J Am Chem Soc 110:1968–1970

    Article  CAS  Google Scholar 

  23. Kolb HC, VanNieuwenhze MS, Sarpless KB (1994) Chem Rev 94:2483–2457

    Article  CAS  Google Scholar 

  24. Noe MC, Letavic MA, Snow SL (2005) Org Reactions 66:109–625

    CAS  Google Scholar 

  25. Zaitsev AB, Adolfsson H (2006) Synthesis: 1725–1756

    Google Scholar 

  26. Galatsis P (2007) In: Li JJ, Corey EJ (eds) Name reactions for functional group transformations. Wiley, Hoboken, NJ. 67–83

    Google Scholar 

  27. Ager DJ, Allen DR (2006) In: Ager DJ (ed) Handbook of chiral chemicals, 2nd edn. CRC Press LLC, Boca Raton, FL, pp 123–146

    Google Scholar 

  28. Kobayashi S, Sugiura M (2006) Adv synth catal 348:1496–1504, Wiley-VCH Verlag GmbH & Co. KGaA

    Article  CAS  Google Scholar 

  29. Corey EJ, Noe MC, Grogan MJ (1994) Tetrahedron Lett 35:6427–6430

    Article  CAS  Google Scholar 

  30. Norrby P-O, Kolb HC, Sharpless KB (1994) J Am Chem Soc 116:8470–8478

    Article  CAS  Google Scholar 

  31. Griffith WP, Skapski AC, Woode KA, Wright MJ (1978) Inorg Chim Acta 31:L413

    Article  CAS  Google Scholar 

  32. Sharpless KB, Amberg W, Beller M, Chen H, Hartung J, Kawanami Y, Lubben D, Manoury E, Ogino Y, Shibata T, Ukita T (1991) J Org Chem 56:4585–4588

    Article  CAS  Google Scholar 

  33. Corey EJ, Noe MC, Sarshar S (1994) Tetrahedron Lett 35:2861–2864

    Article  CAS  Google Scholar 

  34. Wai JSM, Marko I, Svendsen JS, Finn MG, Jacobsen EN, Sharpless KB (1989) J Am Chem Soc 111:1123–1125

    Article  CAS  Google Scholar 

  35. Corey EJ, Noe MC, Sarshar S (1993) J Am Chem Soc 115:3828–3831

    Article  CAS  Google Scholar 

  36. Duppau P, Epple R, Thomas AA, Folkin VV, Sharpless KB (2002) Adv Synth Catal 344:421–433

    Article  Google Scholar 

  37. Singh MP, Singh HS, Arya BS, Singh AK, Sisodia AK (1975) Indian J Chem 13:112–117

    CAS  Google Scholar 

  38. Minato M, Yamamoto K, Tsuji J (1990) J Org Chem 55:766–768

    Article  CAS  Google Scholar 

  39. Kwong HL, Sorato C, Ogino Y, Chen H, Sharpless KB (1990) Tetrahedron Lett 31:2999–3002

    Article  CAS  Google Scholar 

  40. Lu X, Xu Z, Yang G (2000) Org Proc Res Dev 4:575–576

    Article  CAS  Google Scholar 

  41. Dobler C, Mehltretter G, Sundermeier U, Beller M (2001) J Organomet Chem 621:70–76

    Article  CAS  Google Scholar 

  42. Choudary BM, Chowdary NS, Madhi S, Kantam ML (2003) J Org Chem 68:1736–1746

    Article  PubMed  CAS  Google Scholar 

  43. Hoegaerts D, Sels BF, DeVos DE, Verpoort F, Jacobs PA (2000) Catal Today 60:209–218

    Article  CAS  Google Scholar 

  44. Trifiro F, Vaccari A (1996) Comprehensive supramolecular chemistry, vol 7. Pergamon; Elsevier, Oxford, pp 251–278

    Google Scholar 

  45. Choudary BM, Chowdary NS, Madhi S, Kantam ML (2001) Angew Chem Int Ed 40:4620–4623

    Google Scholar 

  46. Murray CK, Zhen QY, Cheng X, Peterson SK, for Hauser Inc., US Pat. 5, 679,807

    Google Scholar 

  47. Poppe L, Novak L (1992) Selective biocatalysis. VCH, Weinheim

    Google Scholar 

  48. Rosenthal U, Burlakov V, Arndt P, Baumann W, Spannenberg A (2005) Organometallics 244:456–471

    Article  Google Scholar 

  49. Godfrey A, Ganem B (1992) Tetrahedron Lett 33:7461–6464

    Article  CAS  Google Scholar 

  50. Schedler DJA, Godfrey A, Ganem B (1993) Tetrahedron Lett 34:5035–5038

    Article  CAS  Google Scholar 

  51. Schedler DJA, Li J, Ganem B (1996) J Org Chem 61:4115–4119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitomir Šunjić .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Šunjić, V., Parnham, M.J. (2011). Paclitaxel. In: Signposts to Chiral Drugs. Springer, Basel. https://doi.org/10.1007/978-3-0348-0125-6_14

Download citation

Publish with us

Policies and ethics