Skip to main content

On Divergence Form Second-order PDEs with Growing Coefficients in W 1 p Spaces without Weights

  • Chapter
  • First Online:

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 80))

Abstract

We consider second-order divergence form uniformly parabolic and elliptic PDEs with bounded and VMOx leading coefficients and possibly linearly growing lower-order coefficients. We look for solutions which are summable to the pth power with respect to the usual Lebesgue measure along with their first derivatives with respect to the spatial variables.

Mathematics Subject Classification (2000). 60H15,35K15.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Assing and R. Manthey, Invariant measures for stochastic heat equations with unbounded coefficients, Stochastic Process. Appl., Vol. 103 (2003), No. 2, 237–256.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Cannarsa and V. Vespri, Generation of analytic semigroups by elliptic operators with unbounded coefficients, SIAM J. Math. Anal., Vol. 18 (1987), No. 3, 857–872.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Cannarsa and V. Vespri, Existence and uniqueness results for a nonlinear stochastic partial differential equation, in Stochastic Partial Differential Equations and Applications Proceedings, G. Da Prato and L. Tubaro (eds.), Lecture Notes in Math., Vol. 1236, pp. 1–24, Springer Verlag, 1987.

    Google Scholar 

  4. A. Chojnowska-Michalik and B. Goldys, Generalized symmetric Ornstein-Uhlenbeck semigroups in Lp: Littlewood-Paley-Stein inequalities and domains of generators, J. Funct. Anal., Vol. 182 (2001), 243–279.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Cupini and S. Fornaro, Maximal regularity in Lp(RN) for a class of elliptic operators with unbounded coefficients, Differential Integral Equations, Vol. 17 (2004), No. 3–4, 259–296.

    MATH  MathSciNet  Google Scholar 

  6. M. Geissert and A. Lunardi, Invariant measures and maximal L2 regularity for nonautonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc. (2), Vol. 77 (2008), No. 3, 719–740.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in L2 spaces with respect to invariant measures, J. Math. Pures Appl., Vol. 86 (2006), 310–321.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Gyöngy, Stochastic partial differential equations on manifolds, I, Potential Analysis, Vol. 2 (1993), 101–113.

    Article  MATH  MathSciNet  Google Scholar 

  9. I. Gyöngy, Stochastic partial differential equations on manifolds II. Nonlinear filtering, Potential Analysis, Vol. 6 (1997), 39–56.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Gyöngy and N.V. Krylov, On stochastic partial differential equations with unbounded coefficients, Potential Analysis, Vol. 1 (1992), No. 3, 233–256.

    Article  MATH  MathSciNet  Google Scholar 

  11. N.V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Function. Anal., Vol. 250 (2007), 521–558.

    Article  MATH  Google Scholar 

  12. N.V. Krylov, “Lectures on elliptic and parabolic equations in Sobolev spaces”, Amer. Math. Soc., Providence, RI, 2008.

    Google Scholar 

  13. N.V. Krylov, On linear elliptic and parabolic equations with growing drift in Sobolev spaces without weights, Problemy Matemtaticheskogo Analiza, Vol. 40 (2009), 77–90, in Russian; English version in Journal of Mathematical Sciences, Vol. 159 (2009), No. 1, 75–90, Springer.

    Google Scholar 

  14. N.V. Krylov, Itô’s formula for the Lp-norm of stochastic W1 p -valued processes, to appear in Probab. Theory Related Fields, Probab. Theory and Related Fields, Vol. 147 (2010), No. 3–4, 583–605.

    Article  MATH  Google Scholar 

  15. N.V. Krylov, Filtering equations for partially observable diffusion processes with Lipschitz continuous coefficients, to appear in “The Oxford Handbook of Nonlinear Filtering”, Oxford University Press, http://arxiv.org/abs/0908.1935.

  16. N.V. Krylov, On the Itô-Wentzell formula for distribution-valued processes and related topics, submitted to Probab. Theory Related Fields, http://arxiv.org/abs/0904.2752, to appear.

  17. N.V. Krylov, On divergence form SPDEs with growing coefficients in W1 2 spaces without weights, SIAM J. Math. Anal., Vol. 42 (2010), No. 2, 609–633.

    Article  MATH  MathSciNet  Google Scholar 

  18. N.V. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coefficients, Comm. in PDEs, Vol. 35 (2010), No. 1, 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Lunardi and V. Vespri, Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in Lp(Rn), Rend. Istit. Mat. Univ. Trieste 28 (1996), suppl., 251–279 (1997).

    MATH  MathSciNet  Google Scholar 

  20. G. Metafune, Lp-spectrum of Ornstein-Uhlenbeck operators, Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Sér. 4, Vol. 30 (2001), No. 1, 97–124.

    MATH  MathSciNet  Google Scholar 

  21. G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an Lp-space with invariant measure, Ann. Sc. Norm. Super. Pisa, Cl. Sci., (5) 1 (2002), 471–485.

    Google Scholar 

  22. G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt, Lp-regularity for elliptic operators with unbounded coefficients, Adv. Differential Equations, Vol. 10 (2005), No. 10, 1131–1164.

    MATH  MathSciNet  Google Scholar 

  23. J. Prüss, A. Rhandi, and R. Schnaubelt, The domain of elliptic operators on Lp(Rd) with unbounded drift coefficients, Houston J. Math., Vol. 32 (2006), No. 2, 563–576.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Krylov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Krylov, N.V. (2011). On Divergence Form Second-order PDEs with Growing Coefficients in W 1 p Spaces without Weights. In: Escher, J., et al. Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_20

Download citation

Publish with us

Policies and ethics