Skip to main content

On Unit-Central Rings

  • Conference paper
Advances in Ring Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

We establish commutativity theorems for certain classes of rings in which every invertible element is central, or, more generally, in which all invertible elements commute with one another. We prove that if R is a semiexchange ring (i.e., its factor ring modulo its Jacobson radical is an exchange ring) with all invertible elements central, then R is commutative. We also prove that if R is a semiexchange ring in which all invertible elements commute with one another, and R has no factor ring with two elements, then R is commutative. We offer some examples of noncommutative rings in which all invertible elements commute with one another, or are central. We close with a list of problems for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Amitsur, The identities of PI-rings, Proc. Amer. Math. Soc. 4 (1953), no. 1, 27–34.

    MATH  MathSciNet  Google Scholar 

  2. P. Ara, K.R. Goodearl, K.C. O’Meara, E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998), 105–137.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Ara, K.C. O’Meara, F. Perera, Gromov translation algebras over discrete trees are exchange rings, Trans. Amer. Math. Soc. 356 (2004), no. 5, 2067–2079.

    Article  MATH  MathSciNet  Google Scholar 

  4. W.D. Burgess, P. Menal, On strongly p-regular rings and homomorphisms into them, Comm. Algebra 16 (1988), no. 8, 1701–1725.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Chebotar, P.-H. Lee, E. R. Puczyłowski, On prime rings with commuting nilpotent elements, Proc. Amer. Math. Soc. 137 (2009), no. 9, 2899–2903.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Chen, Exchange rings with Artinian primitive factors, Algebr. Represent. Theory 2 (1999), no. 2, 201–207.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Cohen, K. Koh, The group of units in a compact ring, J. Pure Appl. Algebra 54 (1988), no. 2, 167–179.

    Article  MATH  MathSciNet  Google Scholar 

  8. V.P. Camillo, H.P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737–4749.

    Article  MATH  MathSciNet  Google Scholar 

  9. V.P. Camillo, D. Khurana, T.Y. Lam, W.K. Nicholson, Y. Zhou, Continuous modules are clean, J. Algebra 304 (2006), no. 1, 94–111.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Chen, Semiexchange rings and K 1-groups of semilocal rings, Nanjing Daxue Xuebao Shuxue Bannian Kan 24 (2007), no. 1, 65–71.

    MATH  MathSciNet  Google Scholar 

  11. A.S. Dugas, T.Y. Lam, Quasi-duo rings and stable range descent, J. Pure Appl. Algebra 195 (2005), no. 3, 243–259.

    Article  MATH  MathSciNet  Google Scholar 

  12. K.E. Eldridge, I. Fischer, D.C.C. rings with a cyclic group of units, Duke Math. J. 34 (1967), 243–248.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.W. Fisher, R.L. Snider, Rings generated by their units, J. Algebra 42 (1976), no. 2, 363–368.

    Article  MathSciNet  Google Scholar 

  14. K.R. Goodearl, R.B. Warfield Jr., Algebras over zero-dimensional rings, Math. Ann. 223 (1976), no. 2, 157–168.

    Article  MATH  MathSciNet  Google Scholar 

  15. R.N. Gupta, A. Khurana, D. Khurana, T.Y. Lam, Rings over which the transpose of every invertible matrix is invertible, J. Algebra, to appear.

    Google Scholar 

  16. J. Han, The structure of semiperfect rings, J. Korean Math. Soc. 45 (2008), 425–433.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Henriksen, Two classes of rings generated by their units, J. Algebra 31 (1974), 182–193.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Khurana, A.K. Srivastava, Right self-injective rings in which each element is sum of two units, J. Algebra Appl. 6 (2007), no. 2, 281–286.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Khurana, A.K. Srivastava, Unit sum numbers of right self-injective rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 355–360.

    Article  MATH  MathSciNet  Google Scholar 

  20. T.Y. Lam, A First Course in Noncommutative Rings, Second Edition, Graduate Texts in Math. 131 (Springer-Verlag, New York, 2001).

    MATH  Google Scholar 

  21. W.K. Nicholson, H.J. Springer, Commutativity of rings with abelian or solvable units, Proc. Amer. Math. Soc. 56 (1976), no. 1, 59–62.

    Article  MATH  MathSciNet  Google Scholar 

  22. W.K. Nicholson, Semiperfect rings with abelian group of units, Pacific J. Math. 49 (1973), 191–198.

    MATH  MathSciNet  Google Scholar 

  23. W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278.

    Article  MATH  MathSciNet  Google Scholar 

  24. W.K. Nicholson, M.F. Yousif, Principally injective rings, J. Algebra 174 (1995), no. 1, 77–93.

    Article  MATH  MathSciNet  Google Scholar 

  25. W.K. Nicholson, E. Sánchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra 271 (2004), 391–406.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Raphael, Rings which are generated by their units, J. Algebra 28 (1974), 199–205.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Stock, On rings whose projective modules have the exchange property, J. Algebra 103 (1986), no. 2, 437–453.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Vámos, 2-Good Rings, Q. J. Math. 56 (2005), no. 3, 417–430.

    Article  MATH  MathSciNet  Google Scholar 

  29. R.B. Warfield Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31–36.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Zelinsky, Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc. 5 (1954), 627–630.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to S.K. Jain in honor of his 70th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Khurana, D., Marks, G., Srivastava, A.K. (2010). On Unit-Central Rings. In: Van Huynh, D., López-Permouth, S.R. (eds) Advances in Ring Theory. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0286-0_13

Download citation

Publish with us

Policies and ethics