Skip to main content

Semiclassical Limits of Quantized Coordinate Rings

  • Conference paper
Book cover Advances in Ring Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

This paper offers an expository account of some ideas, methods, and conjectures concerning quantized coordinate rings and their semiclassical limits, with a particular focus on primitive ideal spaces. The semiclassical limit of a family of quantized coordinate rings of an affine algebraic variety V consists of the classical coordinate ring O(V) equipped with an associated Poisson structure. Conjectured relationships between primitive ideals of a generic quantized coordinate ring A and symplectic leaves in V (relative to a semiclassical limit Poisson structure on O(V)) are discussed, as are breakdowns in the connections when the symplectic leaves are not algebraic. This prompts replacement of the differential-geometric concept of symplectic leaves with the algebraic concept of symplectic cores, and a reformulated conjecture is proposed: The primitive spectrum of A should be homeomorphic to the space of symplectic cores in V, and to the Poisson-primitive spectrum of O(V). Various examples, including both quantized coordinate rings and enveloping algebras of solvable Lie algebras, are analyzed to support the choice of symplectic cores to replace symplectic leaves.

This research was partially supported by National Science Foundation grant DMS-0800948.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Adler, P. van Moerbeke, and P. Vanhaecke, Algebraic Integrability, Painlevé Geometry and Lie Algebras, Springer-Verlag, Berlin, 2004.

    MATH  Google Scholar 

  2. W. Borho, P. Gabriel, and R. Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren, Lecture Notes in Math. 357, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  3. K.A. Brown, Personal communication, Nov. 2008.

    Google Scholar 

  4. K.A. Brown and K.R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Courses in Math. CRM Barcelona, Birkhäuser, Basel, 2002.

    Google Scholar 

  5. K.A. Brown, K.R. Goodearl, and M. Yakimov, Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space, Advances in Math. 206 (2006), 567–629.

    Article  MATH  MathSciNet  Google Scholar 

  6. K.A. Brown and I. Gordon, Poisson orders, representation theory, and symplectic reflection algebras, J. reine angew. Math. 559 (2003), 193–216.

    MATH  MathSciNet  Google Scholar 

  7. N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkh äuser, Boston, 1997.

    MATH  Google Scholar 

  8. D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993.

    MATH  Google Scholar 

  9. J. Dixmier, Représentations irréductibles des algèbres de Lie résolubles, J. Math. pures appl. 45 (1966), 1–66.

    MATH  MathSciNet  Google Scholar 

  10. J. Dixmier, Enveloping Algebras, North-Holland, Amsterdam, 1977.

    Google Scholar 

  11. D.R. Farkas and G. Letzter, Ring theory from symplectic geometry, J. Pure Appl. Algebra 125 (1998), 155–190.

    Article  MATH  MathSciNet  Google Scholar 

  12. K.R. Goodearl, Prime spectra of quantized coordinate rings, in Interactions between Ring Theory and Representations of Algebras (Murcia 1998) (F. Van Oystaeyen and M. Saorín, Eds.), Dekker, New York, 2000, 205–237.

    Google Scholar 

  13. S.K. Jain and S.R. López-Permouth Eds. Contemp. Math. 419 2006 131–154.

    Google Scholar 

  14. K.R. Goodearl and S. Launois, The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras, Bull. Soc. Math. France (to appear), posted at arxiv.org/abs/0705.3486.

    Google Scholar 

  15. K.R. Goodearl and E.S. Letzter, Prime and primitive spectra of multiparameter quantum affine spaces, in Trends in Ring Theory. Proc. Miskolc Conf. 1996 (V. Dlab and L. Márki, eds.), Canad. Math. Soc. Conf. Proc. Series 22 (1998), 39–58.

    Google Scholar 

  16. E.S. Letzter, The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc. 352 (2000), 1381–1403.

    Article  MATH  MathSciNet  Google Scholar 

  17. E.S. Letzter, Quantum n-space as a quotient of classical n-space, Trans. Amer. Math. Soc. 352 (2000), 5855–5876.

    Article  MATH  MathSciNet  Google Scholar 

  18. E.S. Letzter, Semiclassical limits of quantum affine spaces, Proc. Edinburgh Math. Soc. 52 (2009), 387–407.

    Article  MATH  MathSciNet  Google Scholar 

  19. K.R. Goodearl and M. Yakimov, Poisson structures on affine spaces and flag varieties. II, Trans. Amer. Math. Soc. 361 (2009), 5753–5780.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Hayashi, Quantum deformations of classical groups, Publ. RIMS 28 (1992), 57–81.

    Article  MATH  Google Scholar 

  21. T.J. Hodges, Quantum tori and Poisson tori, Unpublished Notes, 1994.

    Google Scholar 

  22. T.J. Hodges and T. Levasseur, Primitive ideals of C q[SL(3)], Comm. Math. Phys. 156 (1993), 581–605.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Levasseur, Primitive ideals of C q[SL(n)], J. Algebra 168 (1994), 455–468.

    Article  MATH  MathSciNet  Google Scholar 

  24. T.J. Hodges, T. Levasseur, and M. Toro, Algebraic structure of multi-parameter quantum groups, Advances in Math. 126 (1997), 52–92.

    Article  MATH  MathSciNet  Google Scholar 

  25. K.L. Horton, The prime and primitive spectra of multiparameter quantum symplectic and Euclidean spaces, Communic. in Algebra 31 (2003), 2713–2743.

    MathSciNet  Google Scholar 

  26. C. Ingalls, Quantum toric varieties, preprint, posted at kappa.math.unb.ca/%7Ecolin/.

    Google Scholar 

  27. A. Joseph, Quantum Groups and Their Primitive Ideals, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  28. A. Kamita, Quantum deformations of certain prehomogeneous vector spaces III, Hiroshima Math. J. 30 (2000), 79–115.

    MATH  MathSciNet  Google Scholar 

  29. A.A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), 57–110.

    Article  MathSciNet  Google Scholar 

  30. A.A. Kirillov, Merits and demerits of the orbit method, Bull. Amer. Math. Soc. 36 (1999), 433–488.

    Google Scholar 

  31. A.A. Kirillov, Lectures on the Orbit Method, Grad. Studies in Math. 64, American Math. Soc., Providence, 2004.

    Google Scholar 

  32. A.U. Klimyk and K. Schmüdgen, Quantum Groups and their Representations, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  33. L.I. Korogodski and Ya.S. Soibelman, Algebras of Functions on Quantum Groups: Part I, Math. Surveys and Monographs 56, Amer. Math. Soc., Providence, 1998.

    Google Scholar 

  34. M. Martino, The associated variety of a Poisson prime ideal, J. London Math. Soc. (2) 72 (2005), 110–120.

    Article  MATH  MathSciNet  Google Scholar 

  35. O. Mathieu, Bicontinuity of the Dixmier map, J. Amer. Math. Soc. 4 (1991), 837–863.

    MATH  MathSciNet  Google Scholar 

  36. J.C. McConnell and J.J. Pettit, Crossed products and multiplicative analogs of Weyl algebras, J. London Math. Soc. (2) 38 (1988), 47–55.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Advances in Math. 123 (1996), 16–77.

    Article  MATH  MathSciNet  Google Scholar 

  38. S.-Q. Oh, Catenarity in a class of iterated skew polynomial rings, Comm. Algebra 25(1) (1997), 37–49.

    Article  MATH  MathSciNet  Google Scholar 

  39. S.-Q. Oh, Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices, Comm. Algebra 27 (1999), 2163–2180.

    Google Scholar 

  40. Quantum and Poisson structures of multi-parameter symplectic and Euclidean spaces, J. Algebra 319 (2008), 4485–4535.

    Google Scholar 

  41. S.-Q. Oh, C.-G. Park, and Y.-Y. Shin, Quantum n-space and Poisson n-space, Comm. Algebra 30 (2002), 4197–4209.

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Polishchuk, Algebraic geometry of Poisson brackets, J. Math. Sci. 94 (1997), 1413–1444.

    Article  MathSciNet  Google Scholar 

  43. N. Yu. Reshetikhin, L.A. Takhtadzhyan, and L.D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193–225.

    MATH  MathSciNet  Google Scholar 

  44. I. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, Berlin, 1974.

    MATH  Google Scholar 

  45. Ya.S. Soibel’man, Irreducible representations of the function algebra on the quantum group SU(n), and Schubert cells, Soviet Math. Dokl. 40 (1990), 34–38.

    MATH  MathSciNet  Google Scholar 

  46. Ya.S. Soibel’man, The algebra of functions on a compact quantum group, and its representations, Leningrad Math. J. 2 (1991), 161–178; Correction, (Russian), Algebra i Analiz 2 (1990), 256.

    Google Scholar 

  47. E. Strickland, Classical invariant theory for the quantum symplectic group, Advances in Math. 123 (1996), 78–90.

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Takeuchi, Quantum orthogonal and symplectic groups and their embedding into quantum GL, Proc. Japan Acad. 65 (1989), 55–58.

    Article  MATH  Google Scholar 

  49. M. Takeuchi, A two-parameter quantization of GL(n) (summary), Proc. Japan. Acad. 66 (A) (1990), 112–114.

    Google Scholar 

  50. P. Tauvel and R.W.T. Yu, Lie Algebras and Algebraic Groups, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  51. L.L. Vaksman and Ya.S. Soibel’man, Algebra of functions on the quantum group SU(2), Func. Anal. Applic. 22 (1988), 170–181.

    Article  MATH  MathSciNet  Google Scholar 

  52. M. Vancliff, Primitive and Poisson spectra of twists of polynomial rings, Algebras and Representation Theory 2 (1999), 269–285.

    Article  MATH  MathSciNet  Google Scholar 

  53. P. Vanhaecke, Integrable Systems in the Realm of Algebraic Geometry, Lecture Notes in Math. 1638, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  54. A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523–557.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to S.K. Jain on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Goodearl, K.R. (2010). Semiclassical Limits of Quantized Coordinate Rings. In: Van Huynh, D., López-Permouth, S.R. (eds) Advances in Ring Theory. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0286-0_12

Download citation

Publish with us

Policies and ethics