Skip to main content

New Generation BCG Vaccines

  • Chapter
  • First Online:
Book cover Replicating Vaccines

Abstract

Bacille de Calmette et Guérin (BCG) was attenuated from a virulent strain of Mycobacterium bovis a century ago and has since been administered as an anti-tuberculosis (TB) vaccine to more than four billion people, making it the most widely used vaccine of all time. Although BCG provides significant protection against disease and death due to childhood and disseminated forms of TB, the efficacy of BCG against adult, pulmonary disease is inconsistent. Thus, despite near universal vaccination with BCG in TB endemic areas, TB remains a heavy burden worldwide, especially in developing nations. In recent years, BCG has been utilized in two major vaccine development strategies. First, BCG has been used as a vector to express foreign antigens in studies aimed at developing new vaccines against a variety of viral, parasitic, and bacterial pathogens, and against cancer and allergic diseases. More recently, in a new vaccine paradigm, BCG has been used as a homologous vector to overexpress native mycobacterial antigens in studies aimed at developing improved vaccines against TB. As a vaccine vector, BCG has several major advantages including a very well-established safety profile, high immunogenicity (excellent CD4+ and CD8+ T-cell responses and strong TH1-Type immune responses), and low manufacturing cost. As a vector for recombinant TB vaccines, BCG has the additional advantages of providing a broad array of relevant mycobacterial antigens in addition to the recombinant antigens, moderate efficacy to begin with, high acceptability as a replacement vaccine for BCG in TB endemic countries, and the capacity to express M. tuberculosis proteins in native form and release them in a way that results in their being processed similarly to M. tuberculosis proteins. In addition to the overexpression of native proteins to improve their immunogenicity and protective efficacy against TB, recombinant BCG vaccines have been developed that express immunomodulatory cytokines or have been engineered for enhanced antigen presentation. Several new recombinant BCG vaccines against TB have demonstrated improved protective efficacy against M. tuberculosis, M. bovis, and M. leprae in small animal models. Against non-TB targets, results have been variable, but several recombinant BCG vaccines have demonstrated excellent immunogenicity and protective efficacy; stable and high-level expression of foreign antigens in recombinant BCG, in a way that will make them available for proper processing and presentation, have been recurrent challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clemens DL, Horwitz MA (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181:257–270

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134:713–740

    Article  CAS  PubMed  Google Scholar 

  3. Crowle AJ, Dahl R, Ross E, May MH (1991) Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun 59:1823–1831

    CAS  PubMed  Google Scholar 

  4. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF et al. (1991) New use of BCG for recombinant vaccines. Nature 351:456–460

    Article  CAS  PubMed  Google Scholar 

  5. Stover CK, Bansal GP, Hanson MS, Burlein JE, Palaszynski SR, Young JF, Koenig S, Young DB, Sadziene A, Barbour AG (1993) Protective immunity elicited by recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J Exp Med 178:197–209

    Article  CAS  PubMed  Google Scholar 

  6. Fuerst TR, Stover CK, de la Cruz VF (1991) Development of BCG as a live recombinant vector system: potential use as an HIV vaccine. Biotechnol Ther 2:159–178

    CAS  PubMed  Google Scholar 

  7. Fuerst TR, de la Cruz VF, Bansal GP, Stover CK (1992) Development and analysis of recombinant BCG vector systems. AIDS Res Hum Retroviruses 8:1451–1455

    CAS  PubMed  Google Scholar 

  8. Aldovini A, Young RA (1991) Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature 351:479–482

    Article  CAS  PubMed  Google Scholar 

  9. Winter N, Lagranderie M, Rauzier J, Timm J, Leclerc C, Guy B, Kieny MP, Gheorghiu M, Gicquel B (1991) Expression of heterologous genes in Mycobacterium bovis BCG: induction of a cellular response against HIV-1 Nef protein. Gene 109:47–54

    Article  CAS  PubMed  Google Scholar 

  10. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S (2000) Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 97:13853–13858

    Article  CAS  PubMed  Google Scholar 

  11. Youmans GP (1979) Tuberculosis. W.B. Saunders, Philadelphia

    Google Scholar 

  12. Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S, Lacroix C, Garcia-Pelayo C et al (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci USA 104:5596–5601

    Article  CAS  PubMed  Google Scholar 

  13. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523

    Article  CAS  PubMed  Google Scholar 

  14. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller F (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271:698–702

    Article  CAS  PubMed  Google Scholar 

  15. Rodrigues LC, Diwan VK, Wheeler JG (1993) Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: a meta-analysis. Int J Epidemiol 22:1154–1158

    Article  CAS  PubMed  Google Scholar 

  16. Fine PE (1989) The BCG story: lessons from the past and implications for the future. Rev Infect Dis 11(Suppl 2):S353–S359

    PubMed  Google Scholar 

  17. World Health Organization (2009) Global tuberculosis control: epidemiology, strategy, financing, WHO/HTM/TB/2009.411. World Health Organization (http://www.who.int/)

  18. Brandt L, Feino Cunha J, Weinreich Olsen A, Chilima B, Hirsch P, Appelberg R, Andersen P (2002) Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun 70:672–678

    Article  CAS  PubMed  Google Scholar 

  19. Demangel C, Garnier T, Rosenkrands I, Cole ST (2005) Differential effects of prior exposure to environmental mycobacteria on vaccination with Mycobacterium bovis BCG or a recombinant BCG strain expressing RD1 antigens. Infect Immun 73:2190–2196

    Article  CAS  PubMed  Google Scholar 

  20. McMurray DN, Carlomagno MA, Mintzer CL, Tetzlaff CL (1985) Mycobacterium bovis BCG vaccine fails to protect protein-deficient guinea pigs against respiratory challenge with virulent Mycobacterium tuberculosis. Infect Immun 50:555–559

    CAS  PubMed  Google Scholar 

  21. Behr MA, Small PM (1997) Has BCG attenuated to impotence? Nature 389:133–134

    Article  CAS  PubMed  Google Scholar 

  22. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S (2009) Commonly administered BCG strains including an evolutionarily early strain and evolutionarily late strains of disparate genealogy induce comparable protective immunity against tuberculosis. Vaccine 27:441–445

    Article  CAS  PubMed  Google Scholar 

  23. Hart PD, Sutherland I (1977) BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br Med J 2:293–295

    Article  CAS  PubMed  Google Scholar 

  24. Elias D, Akuffo H, Britton S (2006) Helminthes could influence the outcome of vaccines against TB in the tropics. Parasite Immunol 28:507–513

    Article  CAS  PubMed  Google Scholar 

  25. Rook GA, Dheda K, Zumla A (2005) Immune responses to tuberculosis in developing countries: implications for new vaccines. Nat Rev Immunol 5:661–667

    Article  CAS  PubMed  Google Scholar 

  26. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298

    Article  PubMed  CAS  Google Scholar 

  27. Harth G, Lee BY, Horwitz MA (1997) High-level heterologous expression and secretion in rapidly growing nonpathogenic mycobacteria of four major Mycobacterium tuberculosis extracellular proteins considered to be leading vaccine candidates and drug targets. Infect Immun 65:2321–2328

    CAS  PubMed  Google Scholar 

  28. Horwitz MA, Harth G (2003) A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 71:1672–1679

    Article  CAS  PubMed  Google Scholar 

  29. Blander SJ, Horwitz MA (1989) Vaccination with the major secretory protein of Legionella pneumophila induces cell-mediated and protective immunity in a guinea pig model of Legionnaires' disease. J Exp Med 169:691–705

    Article  CAS  PubMed  Google Scholar 

  30. Blander SJ, Horwitz MA (1991) Vaccination with the major secretory protein of Legionella induces humoral and cell-mediated immune responses and protective immunity across different serogroups of Legionella pneumophila and different species of Legionella. J Immunol 147:285–291

    CAS  PubMed  Google Scholar 

  31. Blander SJ, Horwitz MA (1993) Major cytoplasmic membrane protein of Legionella pneumophila, a genus common antigen and member of the hsp 60 family of heat shock proteins, induces protective immunity in a guinea pig model of Legionnaires' disease. J Clin Invest 91:717–723

    Article  CAS  PubMed  Google Scholar 

  32. Pal PG, Horwitz MA (1992) Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis. Infect Immun 60:4781–4792

    CAS  PubMed  Google Scholar 

  33. Horwitz MA, Lee BW, Dillon BJ, Harth G (1995) Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 92:1530–1534

    Article  CAS  PubMed  Google Scholar 

  34. Horwitz MA (2005) Recombinant BCG expressing Mycobacterium tuberculosis major extracellular proteins. Microbes Infect 7:947–954

    Article  CAS  PubMed  Google Scholar 

  35. Wiker HG, Harboe M (1992) The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev 56:648–661

    CAS  PubMed  Google Scholar 

  36. Lee BY, Horwitz MA (1995) Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J Clin Invest 96:245–249

    Article  CAS  PubMed  Google Scholar 

  37. Garbe TR, Barathi J, Barnini S, Zhang Y, Abou-Zeid C, Tang D, Mukherjee R, Young DB (1994) Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140(1):133–138

    Article  CAS  PubMed  Google Scholar 

  38. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S (2006) Extraordinarily few organisms of a live recombinant BCG vaccine against tuberculosis induce maximal cell-mediated and protective immunity. Vaccine 24:443–451

    Article  CAS  PubMed  Google Scholar 

  39. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S (2006) A novel live recombinant mycobacterial vaccine against bovine tuberculosis more potent than BCG. Vaccine 24:1593–1600

    Article  CAS  PubMed  Google Scholar 

  40. Gillis T, Harth G, Horwitz MA (2008) Recombinant BCG expressing Mycobacterium leprae or Mycobacterium tuberculosis Ag85B induce protection against M. leprae challenge comparable or superior to BCG: 17th International Leprosy Congress, Hyderabad (Andhra Pradesh), India

    Google Scholar 

  41. Hoft DF, Blazevic A, Abate G, Hanekom WA, Kaplan G, Soler JH, Weichold F, Geiter L, Sadoff JC, Horwitz MA (2008) A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis 198:1491–1501

    Article  PubMed  Google Scholar 

  42. Sugawara I, Udagawa T, Taniyama T (2007) Protective efficacy of recombinant (Ag85A) BCG Tokyo with Ag85A peptide boosting against Mycobacterium tuberculosis-infected guinea pigs in comparison with that of DNA vaccine encoding Ag85A. Tuberculosis (Edinb) 87:94–101

    Article  CAS  Google Scholar 

  43. Sugawara I, Li Z, Sun L, Udagawa T, Taniyama T (2007) Recombinant BCG Tokyo (Ag85A) protects cynomolgus monkeys (Macaca fascicularis) infected with H37Rv Mycobacterium tuberculosis. Tuberculosis (Edinb) 87:518–525

    Article  CAS  Google Scholar 

  44. Sugawara I, Sun L, Mizuno S, Taniyama T (2009) Protective efficacy of recombinant BCG Tokyo (Ag85A) in rhesus monkeys (Macaca mulatta) infected intratracheally with H37Rv Mycobacterium tuberculosis. Tuberculosis (Edinb) 89:62–67

    Article  CAS  Google Scholar 

  45. Walsh GP, Tan EV, Dela Cruz EC, Abalos RM, Villahermosa LG, Young LJ, Cellona RV, Nazareno JB, Horwitz MA (1996) The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med 2:430–436

    Article  CAS  PubMed  Google Scholar 

  46. Jain R, Dey B, Dhar N, Rao V, Singh R, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK (2008) Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine profile in lung. PLoS ONE 3:e3869

    Article  PubMed  CAS  Google Scholar 

  47. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539

    Article  CAS  PubMed  Google Scholar 

  48. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717

    Article  CAS  PubMed  Google Scholar 

  49. Brodin P, Majlessi L, Brosch R, Smith D, Bancroft G, Clark S, Williams A, Leclerc C, Cole ST (2004) Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens. J Infect Dis 190:115–122

    Article  CAS  PubMed  Google Scholar 

  50. Bao L, Chen W, Zhang H, Wang X (2003) Virulence, immunogenicity, and protective efficacy of two recombinant Mycobacterium bovis bacillus Calmette-Guerin strains expressing the antigen ESAT-6 from Mycobacterium tuberculosis. Infect Immun 71:1656–1661

    Article  CAS  PubMed  Google Scholar 

  51. Castanon-Arreola M, Lopez-Vidal Y, Espitia-Pinzon C, Hernandez-Pando R (2005) A new vaccine against tuberculosis shows greater protection in a mouse model with progressive pulmonary tuberculosis. Tuberculosis (Edinb) 85:115–126

    Article  CAS  Google Scholar 

  52. Rao V, Dhar N, Shakila H, Singh R, Khera A, Jain R, Naseema M, Paramasivan CN, Narayanan PR, Ramanathan VD et al (2005) Increased expression of Mycobacterium tuberculosis 19 kDa lipoprotein obliterates the protective efficacy of BCG by polarizing host immune responses to the Th2 subtype. Scand J Immunol 61:410–417

    Article  CAS  PubMed  Google Scholar 

  53. Kita Y, Tanaka T, Yoshida S, Ohara N, Kaneda Y, Kuwayama S, Muraki Y, Kanamaru N, Hashimoto S, Takai H et al (2005) Novel recombinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine 23:2132–2135

    Article  CAS  PubMed  Google Scholar 

  54. Shi C, Wang X, Zhang H, Xu Z, Li Y, Yuan L (2007) Immune responses and protective efficacy induced by 85B antigen and early secreted antigenic target-6 kDa antigen fusion protein secreted by recombinant bacille Calmette-Guerin. Acta Biochim Biophys Sin (Shanghai) 39:290–296

    Article  CAS  Google Scholar 

  55. Xu Y, Zhu B, Wang Q, Chen J, Qie Y, Wang J, Wang H, Wang B (2007) Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-gamma confers effective protection against Mycobacterium tuberculosis in C57BL/6 mice. FEMS Immunol Med Microbiol 51:480–487

    Article  CAS  PubMed  Google Scholar 

  56. Qie YQ, Wang JL, Liu W, Shen H, Chen JZ, Zhu BD, Xu Y, Zhang XL, Wang HH (2009) More vaccine efficacy studies on the recombinant Bacille Calmette-Guerin co-expressing Ag85B, Mpt64 and Mtb8.4. Scand J Immunol 69:342–350

    Article  CAS  PubMed  Google Scholar 

  57. Ohara N, Matsuoka M, Nomaguchi H, Naito M, Yamada T (2001) Protective responses against experimental Mycobacterium leprae infection in mice induced by recombinant Bacillus Calmette-Guerin over-producing three putative protective antigen candidates. Vaccine 19:1906–1910

    Article  CAS  PubMed  Google Scholar 

  58. Steele JH (1995) Regional and country status reports. Part 2. Introduction. In: Thoen CO, Steele JH (eds) Mycobacterium bovis infection in animals and humans. Iowa State University press, Ames, IA, pp 169–172

    Google Scholar 

  59. Hewinson RG, Vordermeier HM, Buddle BM (2003) Use of the bovine model of tuberculosis for the development of improved vaccines and diagnostics. Tuberculosis (Edinb) 83:119–130

    Article  CAS  Google Scholar 

  60. Collins DM, de Lisle GW, Aldwell FE, Buddle BM (2007) A new attenuated Mycobacterium bovis vaccine protects brushtail possums (Trichosurus vulpecula) against experimental tuberculosis infection. Vaccine 25:4659–4664

    Article  CAS  PubMed  Google Scholar 

  61. World Health Organization (2007) Revised BCG vaccination guidelines for infants at risk for HIV infection. Wkly Epidemiol Rec 82:193–196

    Google Scholar 

  62. Tullius MV, Harth G, Maslesa-Galic S, Dillon BJ, Horwitz MA (2008) A replication-limited recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun 76:5200–5214

    Article  CAS  PubMed  Google Scholar 

  63. Murray PJ, Aldovini A, Young RA (1996) Manipulation and potentiation of antimycobacterial immunity using recombinant bacille Calmette-Guerin strains that secrete cytokines. Proc Natl Acad Sci USA 93:934–939

    Article  CAS  PubMed  Google Scholar 

  64. O'Donnell MA, Aldovini A, Duda RB, Yang H, Szilvasi A, Young RA, DeWolf WC (1994) Recombinant Mycobacterium bovis BCG secreting functional interleukin-2 enhances gamma interferon production by splenocytes. Infect Immun 62:2508–2514

    PubMed  Google Scholar 

  65. Ryan AA, Wozniak TM, Shklovskaya E, O'Donnell MA, de St F, Groth B, Britton WJ, Triccas JA (2007) Improved protection against disseminated tuberculosis by Mycobacterium bovis bacillus Calmette-Guerin secreting murine GM-CSF is associated with expansion and activation of APCs. J Immunol 179:8418–8424

    CAS  PubMed  Google Scholar 

  66. Young SL, O'Donnell MA, Buchan GS (2002) IL-2-secreting recombinant bacillus Calmette Guerin can overcome a Type 2 immune response and corticosteroid-induced immunosuppression to elicit a Type 1 immune response. Int Immunol 14:793–800

    Article  CAS  PubMed  Google Scholar 

  67. Young S, O'Donnell M, Lockhart E, Buddle B, Slobbe L, Luo Y, De Lisle G, Buchan G (2002) Manipulation of immune responses to Mycobacterium bovis by vaccination with IL-2- and IL-18-secreting recombinant bacillus Calmette Guerin. Immunol Cell Biol 80:209–215

    Article  CAS  PubMed  Google Scholar 

  68. Slobbe L, Lockhart E, O'Donnell MA, MacKintosh C, De Lisle G, Buchan G (1999) An in vivo comparison of bacillus Calmette-Guerin (BCG) and cytokine-secreting BCG vaccines. Immunology 96:517–523

    Article  CAS  PubMed  Google Scholar 

  69. Tang C, Yamada H, Shibata K, Maeda N, Yoshida S, Wajjwalku W, Ohara N, Yamada T, Kinoshita T, Yoshikai Y (2008) Efficacy of recombinant bacille Calmette-Guerin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis. J Infect Dis 197:1263–1274

    Article  CAS  PubMed  Google Scholar 

  70. Arnold J, de Boer EC, O'Donnell MA, Bohle A, Brandau S (2004) Immunotherapy of experimental bladder cancer with recombinant BCG expressing interferon-gamma. J Immunother 27:116–123

    Article  CAS  PubMed  Google Scholar 

  71. Liu W, O'Donnell MA, Chen X, Han R, Luo Y (2009) Recombinant bacillus Calmette-Guerin (BCG) expressing interferon-alpha 2B enhances human mononuclear cell cytotoxicity against bladder cancer cell lines in vitro. Cancer Immunol Immunother 58:1647–1655

    Article  CAS  PubMed  Google Scholar 

  72. Luo Y, Chen X, Han R, O'Donnell MA (2001) Recombinant bacille Calmette-Guerin (BCG) expressing human interferon-alpha 2B demonstrates enhanced immunogenicity. Clin Exp Immunol 123:264–270

    Article  CAS  PubMed  Google Scholar 

  73. Yamada H, Matsumoto S, Matsumoto T, Yamada T, Yamashita U (2000) Murine IL-2 secreting recombinant Bacillus Calmette-Guerin augments macrophage-mediated cytotoxicity against murine bladder cancer MBT-2. J Urol 164:526–531

    Article  CAS  PubMed  Google Scholar 

  74. Luo Y, Yamada H, Chen X, Ryan AA, Evanoff DP, Triccas JA, O'Donnell MA (2004) Recombinant Mycobacterium bovis bacillus Calmette-Guerin (BCG) expressing mouse IL-18 augments Th1 immunity and macrophage cytotoxicity. Clin Exp Immunol 137:24–34

    Article  CAS  PubMed  Google Scholar 

  75. Biet F, Kremer L, Wolowczuk I, Delacre M, Locht C (2002) Mycobacterium bovis BCG producing interleukin-18 increases antigen-specific gamma interferon production in mice. Infect Immun 70:6549–6557

    Article  CAS  PubMed  Google Scholar 

  76. Biet F, Duez C, Kremer L, Marquillies P, Amniai L, Tonnel AB, Locht C, Pestel J (2005) Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction. Allergy 60:1065–1072

    Article  CAS  PubMed  Google Scholar 

  77. Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Nasser Eddine A, Mann P, Goosmann C, Bandermann S, Smith D et al (2005) Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115:2472–2479

    Article  CAS  PubMed  Google Scholar 

  78. Williams A, Hatch GJ, Clark SO, Gooch KE, Hatch KA, Hall GA, Huygen K, Ottenhoff TH, Franken KL, Andersen P et al (2005) Evaluation of vaccines in the EU TB vaccine cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis (Edinb) 85:29–38

    Article  CAS  Google Scholar 

  79. Sendide K, Deghmane AE, Pechkovsky D, Av-Gay Y, Talal A, Hmama Z (2005) Mycobacterium bovis BCG attenuates surface expression of mature class II molecules through IL-10-dependent inhibition of cathepsin S. J Immunol 175:5324–5332

    CAS  PubMed  Google Scholar 

  80. Soualhine H, Deghmane AE, Sun J, Mak K, Talal A, Av-Gay Y, Hmama Z (2007) Mycobacterium bovis bacillus Calmette-Guerin secreting active cathepsin S stimulates expression of mature MHC class II molecules and antigen presentation in human macrophages. J Immunol 179:5137–5145

    CAS  PubMed  Google Scholar 

  81. Sun R, Skeiky YA, Izzo A, Dheenadhayalan V, Imam Z, Penn E, Stagliano K, Haddock S, Mueller S, Fulkerson J et al (2009) Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine 27:4412–4423

    Article  CAS  PubMed  Google Scholar 

  82. Snapper SB, Lugosi L, Jekkel A, Melton RE, Kieser T, Bloom BR, Jacobs WR Jr (1988) Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA 85:6987–6991

    Article  CAS  PubMed  Google Scholar 

  83. Jacobs WR Jr, Snapper SB, Lugosi L, Jekkel A, Melton RE, Kieser T, Bloom BR (1989) Development of genetic systems for the mycobacteria. Acta Leprol 7(Suppl 1):203–207

    PubMed  Google Scholar 

  84. Jacobs WR Jr, Tuckman M, Bloom BR (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–535

    Article  CAS  PubMed  Google Scholar 

  85. Lugosi L, Jacobs W, Bloom BR (1989) Transformation of BCG with plasmid DNA. Acta Leprol 7(Suppl 1):256–257

    PubMed  Google Scholar 

  86. Matsuo K, Yamaguchi R, Yamazaki A, Tasaka H, Terasaka K, Totsuka M, Kobayashi K, Yukitake H, Yamada T (1990) Establishment of a foreign antigen secretion system in mycobacteria. Infect Immun 58:4049–4054

    CAS  PubMed  Google Scholar 

  87. Yasutomi Y, Koenig S, Haun SS, Stover CK, Jackson RK, Conard P, Conley AJ, Emini EA, Fuerst TR, Letvin NL (1993) Immunization with recombinant BCG-SIV elicits SIV-specific cytotoxic T lymphocytes in rhesus monkeys. J Immunol 150:3101–3107

    CAS  PubMed  Google Scholar 

  88. Connell ND, Medina-Acosta E, McMaster WR, Bloom BR, Russell DG (1993) Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proc Natl Acad Sci USA 90:11473–11477

    Article  CAS  PubMed  Google Scholar 

  89. Haeseleer F, Pollet JF, Haumont M, Bollen A, Jacobs P (1993) Stable integration and expression of the Plasmodium falciparum circumsporozoite protein coding sequence in mycobacteria. Mol Biochem Parasitol 57:117–126

    Article  CAS  PubMed  Google Scholar 

  90. Cirillo JD, Stover CK, Bloom BR, Jacobs WR Jr, Barletta RG (1995) Bacterial vaccine vectors and bacillus Calmette-Guerin. Clin Infect Dis 20:1001–1009

    CAS  PubMed  Google Scholar 

  91. Im EJ, Saubi N, Virgili G, Sander C, Teoh D, Gatell JM, McShane H, Joseph J, Hanke T (2007) Vaccine platform for prevention of tuberculosis and mother-to-child transmission of human immunodeficiency virus type 1 through breastfeeding. J Virol 81:9408–9418

    Article  CAS  PubMed  Google Scholar 

  92. Leung NJ, Aldovini A, Young R, Jarvis MA, Smith JM, Meyer D, Anderson DE, Carlos MP, Gardner MB, Torres JV (2000) The kinetics of specific immune responses in rhesus monkeys inoculated with live recombinant BCG expressing SIV Gag, Pol, Env, and Nef proteins. Virology 268:94–103

    Article  CAS  PubMed  Google Scholar 

  93. Lagranderie M, Winter N, Balazuc AM, Gicquel B, Gheorghiu M (1998) A cocktail of Mycobacterium bovis BCG recombinants expressing the SIV Nef, Env, and Gag antigens induces antibody and cytotoxic responses in mice vaccinated by different mucosal routes. AIDS Res Hum Retroviruses 14:1625–1633

    Article  CAS  PubMed  Google Scholar 

  94. Mederle I, Le Grand R, Vaslin B, Badell E, Vingert B, Dormont D, Gicquel B, Winter N (2003) Mucosal administration of three recombinant Mycobacterium bovis BCG-SIVmac251 strains to cynomolgus macaques induces rectal IgAs and boosts systemic cellular immune responses that are primed by intradermal vaccination. Vaccine 21:4153–4166

    Article  CAS  PubMed  Google Scholar 

  95. Mederle I, Bourguin I, Ensergueix D, Badell E, Moniz-Peireira J, Gicquel B, Winter N (2002) Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect Immun 70:303–314

    Article  CAS  PubMed  Google Scholar 

  96. Cayabyab MJ, Korioth-Schmitz B, Sun Y, Carville A, Balachandran H, Miura A, Carlson KR, Buzby AP, Haynes BF, Jacobs WR et al (2009) Recombinant Mycobacterium bovis BCG prime-recombinant adenovirus boost vaccination in rhesus monkeys elicits robust polyfunctional simian immunodeficiency virus-specific T-cell responses. J Virol 83:5505–5513

    Article  CAS  PubMed  Google Scholar 

  97. Wada N, Ohara N, Kameoka M, Nishino Y, Matsumoto S, Nishiyama T, Naito M, Yukitake H, Okada Y, Ikuta K et al (1996) Long-lasting immune response induced by recombinant bacillus Calmette-Guerin (BCG) secretion system. Scand J Immunol 43:202–209

    Article  CAS  PubMed  Google Scholar 

  98. Chege GK, Thomas R, Shephard EG, Meyers A, Bourn W, Williamson C, Maclean J, Gray CM, Rybicki EP, Williamson AL (2009) A prime-boost immunisation regimen using recombinant BCG and Pr55(gag) virus-like particle vaccines based on HIV type 1 subtype C successfully elicits Gag-specific responses in baboons. Vaccine 27:4857–4866

    Article  CAS  PubMed  Google Scholar 

  99. Kanekiyo M, Matsuo K, Hamatake M, Hamano T, Ohsu T, Matsumoto S, Yamada T, Yamazaki S, Hasegawa A, Yamamoto N et al (2005) Mycobacterial codon optimization enhances antigen expression and virus-specific immune responses in recombinant Mycobacterium bovis bacille Calmette-Guerin expressing human immunodeficiency virus type 1 Gag. J Virol 79:8716–8723

    Article  CAS  PubMed  Google Scholar 

  100. Promkhatkaew D, Matsuo K, Pinyosukhee N, Thongdeejaroen W, Leang-Aramgul P, Sawanpanyalert P, Warachit P (2009) Prime-boost vaccination using recombinant Mycobacterium bovis BCG and recombinant vaccinia virus DIs harboring HIV-1 CRF01_AE gag in mice: influence of immunization routes. Southeast Asian J Trop Med Public Health 40:273–281

    CAS  PubMed  Google Scholar 

  101. Promkhatkaew D, Pinyosukhee N, Thongdeejaroen W, Sutthent R, Sawanpanyalert P, Warachit P (2009) Enhancement of cell-mediated immune response in mice by whole HIV-1 gag in Mycobacterium bovis BCG as a live vaccine candidate. Southeast Asian J Trop Med Public Health 40:113–122

    PubMed  Google Scholar 

  102. Yasutomi Y, Koenig S, Woods RM, Madsen J, Wassef NM, Alving CR, Klein HJ, Nolan TE, Boots LJ, Kessler JA et al (1995) A vaccine-elicited, single viral epitope-specific cytotoxic T lymphocyte response does not protect against intravenous, cell-free simian immunodeficiency virus challenge. J Virol 69:2279–2284

    CAS  PubMed  Google Scholar 

  103. Ami Y, Izumi Y, Matsuo K, Someya K, Kanekiyo M, Horibata S, Yoshino N, Sakai K, Shinohara K, Matsumoto S et al (2005) Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guerin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity. J Virol 79:12871–12879

    Article  CAS  PubMed  Google Scholar 

  104. Kawahara M (2008) Recombinant Mycobacterium bovis BCG vector system expressing SIV Gag protein stably and persistently induces antigen-specific humoral immune response concomitant with IFN gamma response, even at three years after immunization. Clin Immunol 129:492–498

    Article  CAS  PubMed  Google Scholar 

  105. Kawahara M, Matsuo K, Honda M (2006) Intradermal and oral immunization with recombinant Mycobacterium bovis BCG expressing the simian immunodeficiency virus Gag protein induces long-lasting, antigen-specific immune responses in guinea pigs. Clin Immunol 119:67–78

    Article  CAS  PubMed  Google Scholar 

  106. Kameoka M, Nishino Y, Matsuo K, Ohara N, Kimura T, Yamazaki A, Yamada T, Ikuta K (1994) Cytotoxic T lymphocyte response in mice induced by a recombinant BCG vaccination which produces an extracellular alpha antigen that fused with the human immunodeficiency virus type 1 envelope immunodominant domain in the V3 loop. Vaccine 12:153–158

    Article  CAS  PubMed  Google Scholar 

  107. Honda M, Matsuo K, Nakasone T, Okamoto Y, Yoshizaki H, Kitamura K, Sugiura W, Watanabe K, Fukushima Y, Haga S et al (1995) Protective immune responses induced by secretion of a chimeric soluble protein from a recombinant Mycobacterium bovis bacillus Calmette-Guerin vector candidate vaccine for human immunodeficiency virus type 1 in small animals. Proc Natl Acad Sci USA 92:10693–10697

    Article  CAS  PubMed  Google Scholar 

  108. Hiroi T, Goto H, Someya K, Yanagita M, Honda M, Yamanaka N, Kiyono H (2001) HIV mucosal vaccine: nasal immunization with rBCG-V3J1 induces a long term V3J1 peptide-specific neutralizing immunity in Th1- and Th2-deficient conditions. J Immunol 167:5862–5867

    CAS  PubMed  Google Scholar 

  109. Kawahara M, Hashimoto A, Toida I, Honda M (2002) Oral recombinant Mycobacterium bovis bacillus Calmette-Guerin expressing HIV-1 antigens as a freeze-dried vaccine induces long-term, HIV-specific mucosal and systemic immunity. Clin Immunol 105:326–331

    Article  CAS  PubMed  Google Scholar 

  110. Kawahara M, Matsuo K, Nakasone T, Hiroi T, Kiyono H, Matsumoto S, Yamada T, Yamamoto N, Honda M (2002) Combined intrarectal/intradermal inoculation of recombinant Mycobacterium bovis bacillus Calmette-Guerin (BCG) induces enhanced immune responses against the inserted HIV-1 V3 antigen. Vaccine 21:158–166

    Article  CAS  PubMed  Google Scholar 

  111. Someya K, Cecilia D, Ami Y, Nakasone T, Matsuo K, Burda S, Yamamoto H, Yoshino N, Kaizu M, Ando S et al (2005) Vaccination of rhesus macaques with recombinant Mycobacterium bovis bacillus Calmette-Guerin Env V3 elicits neutralizing antibody-mediated protection against simian-human immunodeficiency virus with a homologous but not a heterologous V3 motif. J Virol 79:1452–1462

    Article  CAS  PubMed  Google Scholar 

  112. Aravindhan V, Narayanan S, Gautham N, Prasad V, Kannan P, Jacobs WR Jr, Narayanan P (2006) T-h-2 immunity and CD3+CD45RBlow-activated T cells in mice immunized with recombinant bacillus Calmette-Guerin expressing HIV-1 principal neutralizing determinant epitope. FEMS Immunol Med Microbiol 47:45–55

    Article  CAS  PubMed  Google Scholar 

  113. Chujoh Y, Matsuo K, Yoshizaki H, Nakasatomi T, Someya K, Okamoto Y, Naganawa S, Haga S, Yoshikura H, Yamazaki A et al (2001) Cross-clade neutralizing antibody production against human immunodeficiency virus type 1 clade E and B' strains by recombinant Mycobacterium bovis BCG-based candidate vaccine. Vaccine 20:797–804

    Article  CAS  PubMed  Google Scholar 

  114. Yu JS, Peacock JW, Jacobs WR Jr, Frothingham R, Letvin NL, Liao HX, Haynes BF (2007) Recombinant Mycobacterium bovis bacillus Calmette-Guerin elicits human immunodeficiency virus type 1 envelope-specific T lymphocytes at mucosal sites. Clin Vaccine Immunol 14:886–893

    Article  CAS  PubMed  Google Scholar 

  115. Lim EM, Lagranderie M, Le Grand R, Rauzier J, Gheorghiu M, Gicquel B, Winter N (1997) Recombinant Mycobacterium bovis BCG producing the N-terminal half of SIVmac251 Env antigen induces neutralizing antibodies and cytotoxic T lymphocyte responses in mice and guinea pigs. AIDS Res Hum Retroviruses 13:1573–1581

    Article  CAS  PubMed  Google Scholar 

  116. Gheorghiu M, Lagranderie MR, Gicquel BM, Leclerc CD (1994) Mycobacterium bovis BCG priming induces a strong potentiation of the antibody response induced by recombinant BCG expressing a foreign antigen. Infect Immun 62:4287–4295

    CAS  PubMed  Google Scholar 

  117. Winter N, Lagranderie M, Gangloff S, Leclerc C, Gheorghiu M, Gicquel B (1995) Recombinant BCG strains expressing the SIVmac251nef gene induce proliferative and CTL responses against nef synthetic peptides in mice. Vaccine 13:471–478

    Article  CAS  PubMed  Google Scholar 

  118. Lagranderie M, Balazuc AM, Gicquel B, Gheorghiu M (1997) Oral immunization with recombinant Mycobacterium bovis BCG simian immunodeficiency virus nef induces local and systemic cytotoxic T-lymphocyte responses in mice. J Virol 71:2303–2309

    CAS  PubMed  Google Scholar 

  119. Fennelly GJ, Flynn JL, ter Meulen V, Liebert UG, Bloom BR (1995) Recombinant bacille Calmette-Guerin priming against measles. J Infect Dis 172:698–705

    CAS  PubMed  Google Scholar 

  120. Zhu YD, Fennelly G, Miller C, Tarara R, Saxe I, Bloom B, McChesney M (1997) Recombinant bacille Calmette-Guerin expressing the measles virus nucleoprotein protects infant rhesus macaques from measles virus pneumonia. J Infect Dis 176:1445–1453

    Article  CAS  PubMed  Google Scholar 

  121. Jabbar IA, Fernando GJ, Saunders N, Aldovini A, Young R, Malcolm K, Frazer IH (2000) Immune responses induced by BCG recombinant for human papillomavirus L1 and E7 proteins. Vaccine 18:2444–2453

    Article  CAS  PubMed  Google Scholar 

  122. Govan VA, Christensen ND, Berkower C, Jacobs WR Jr, Williamson AL (2006) Immunisation with recombinant BCG expressing the cottontail rabbit papillomavirus (CRPV) L1 gene provides protection from CRPV challenge. Vaccine 24:2087–2093

    Article  CAS  PubMed  Google Scholar 

  123. Govan VA, Williamson AL (2007) Rabbits immunised with recombinant BCG expressing the cottontail rabbit papillomavirus (CRPV) L2E7E2 genes induces regression of established papillomas. Virus Res 127:43–48

    Article  CAS  PubMed  Google Scholar 

  124. Bastos RG, Dellagostin OA, Barletta RG, Doster AR, Nelson E, Osorio FA (2002) Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus. Vaccine 21:21–29

    Article  CAS  PubMed  Google Scholar 

  125. Bastos RG, Dellagostin OA, Barletta RG, Doster AR, Nelson E, Zuckermann F, Osorio FA (2004) Immune response of pigs inoculated with Mycobacterium bovis BCG expressing a truncated form of GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 22:467–474

    Article  CAS  PubMed  Google Scholar 

  126. Rezende CA, De Moraes MT, De Souza Matos DC, McIntoch D, Armoa GR (2005) Humoral response and genetic stability of recombinant BCG expressing hepatitis B surface antigens. J Virol Methods 125:1–9

    Article  CAS  PubMed  Google Scholar 

  127. Uno-Furuta S, Matsuo K, Tamaki S, Takamura S, Kamei A, Kuromatsu I, Kaito M, Matsuura Y, Miyamura T, Adachi Y et al (2003) Immunization with recombinant Calmette-Guerin bacillus (BCG)-hepatitis C virus (HCV) elicits HCV-specific cytotoxic T lymphocytes in mice. Vaccine 21:3149–3156

    Article  CAS  PubMed  Google Scholar 

  128. Wei SH, Yin W, An QX, Lei YF, Hu XB, Yang J, Lu X, Zhang H, Xu ZK (2008) A novel hepatitis C virus vaccine approach using recombinant Bacillus Calmette-Guerin expressing multi-epitope antigen. Arch Virol 153:1021–1029

    Article  CAS  PubMed  Google Scholar 

  129. Dennehy M, Bourn W, Steele D, Williamson AL (2007) Evaluation of recombinant BCG expressing rotavirus VP6 as an anti-rotavirus vaccine. Vaccine 25:3646–3657

    Article  CAS  PubMed  Google Scholar 

  130. Bueno SM, Gonzalez PA, Cautivo KM, Mora JE, Leiva ED, Tobar HE, Fennelly GJ, Eugenin EA, Jacobs WR Jr, Riedel CA et al (2008) Protective T cell immunity against respiratory syncytial virus is efficiently induced by recombinant BCG. Proc Natl Acad Sci USA 105:20822–20827

    Article  CAS  PubMed  Google Scholar 

  131. Choi BK, Cho SH, Bai GH, Kim SJ, Hyun BH, Choe YK, Bae YS (2000) Prevention of encephalomyocarditis virus-induced diabetes by live recombinant Mycobacterium bovis bacillus Calmette-Guerin in susceptible mice. Diabetes 49:1459–1467

    Article  CAS  PubMed  Google Scholar 

  132. da Cruz FW, McBride AJ, Conceicao FR, Dale JW, McFadden J, Dellagostin OA (2001) Expression of the B-cell and T-cell epitopes of the rabies virus nucleoprotein in Mycobacterium bovis BCG and induction of an humoral response in mice. Vaccine 20:731–736

    Article  PubMed  Google Scholar 

  133. Zheng C, Xie P, Chen Y (2002) Recombinant Mycobacterium bovis BCG producing the circumsporozoite protein of Plasmodium falciparum FCC-1/HN strain induces strong immune responses in BALB/c mice. Parasitol Int 51:1–7

    Article  CAS  PubMed  Google Scholar 

  134. Matsumoto S, Yanagi T, Ohara N, Wada N, Kanbara H, Yamada T (1996) Stable expression and secretion of the B-cell epitope of rodent malaria from Mycobacterium bovis BCG and induction of long-lasting humoral response in mouse. Vaccine 14:54–60

    Article  CAS  PubMed  Google Scholar 

  135. Matsumoto S, Yukitake H, Kanbara H, Yamada T (1998) Recombinant Mycobacterium bovis bacillus Calmette-Guerin secreting merozoite surface protein 1 (MSP1) induces protection against rodent malaria parasite infection depending on MSP1-stimulated interferon gamma and parasite-specific antibodies. J Exp Med 188:845–854

    Article  CAS  PubMed  Google Scholar 

  136. Matsumoto S, Yukitake H, Kanbara H, Yamada H, Kitamura A, Yamada T (2000) Mycobacterium bovis bacillus calmette-guerin induces protective immunity against infection by Plasmodium yoelii at blood-stage depending on shifting immunity toward Th1 type and inducing protective IgG2a after the parasite infection. Vaccine 19:779–787

    Article  CAS  PubMed  Google Scholar 

  137. Zheng C, Xie P, Chen Y (2001) Immune response induced by recombinant BCG expressing merozoite surface antigen 2 from Plasmodium falciparum. Vaccine 20:914–919

    Article  CAS  PubMed  Google Scholar 

  138. Rapeah S, Norazmi MN (2006) Immunogenicity of a recombinant Mycobacterium bovis bacille Calmette-Guerin expressing malarial and tuberculosis epitopes. Vaccine 24:3646–3653

    Article  CAS  PubMed  Google Scholar 

  139. Abdelhak S, Louzir H, Timm J, Blel L, Benlasfar Z, Lagranderie M, Gheorghiu M, Dellagi K, Gicquel B (1995) Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against Leishmania major infection in BALB/c mice. Microbiology 141(Pt 7):1585–1592

    Article  CAS  PubMed  Google Scholar 

  140. Streit JA, Recker TJ, Donelson JE, Wilson ME (2000) BCG expressing LCR1 of Leishmania chagasi induces protective immunity in susceptible mice. Exp Parasitol 94:33–41

    Article  CAS  PubMed  Google Scholar 

  141. Kremer L, Baulard A, Estaquier J, Content J, Capron A, Locht C (1995) Analysis of the Mycobacterium tuberculosis 85A antigen promoter region. J Bacteriol 177:642–653

    CAS  PubMed  Google Scholar 

  142. Kremer L, Riveau G, Baulard A, Capron A, Locht C (1996) Neutralizing antibody responses elicited in mice immunized with recombinant bacillus Calmette-Guerin producing the Schistosoma mansoni glutathione S-transferase. J Immunol 156:4309–4317

    CAS  PubMed  Google Scholar 

  143. Kremer L, Dupre L, Riveau G, Capron A, Locht C (1998) Systemic and mucosal immune responses after intranasal administration of recombinant Mycobacterium bovis bacillus Calmette-Guerin expressing glutathione S-transferase from Schistosoma haematobium. Infect Immun 66:5669–5676

    CAS  PubMed  Google Scholar 

  144. Dai W, Gao H, Huang H, Yuan Y, Hu J, Huangfu Y (2003) Comparative study on the immunogenicity between recombinant MS-Sj26GST vaccine and recombinant BCG-Sj26GST vaccine in Schistosoma japonicum. J Huazhong Univ Sci Technolog Med Sci 23(213–215):218

    Google Scholar 

  145. Varaldo PB, Leite LC, Dias WO, Miyaji EN, Torres FI, Gebara VC, Armoa GR, Campos AS, Matos DC, Winter N et al (2004) Recombinant Mycobacterium bovis BCG expressing the Sm14 antigen of Schistosoma mansoni protects mice from cercarial challenge. Infect Immun 72:3336–3343

    Article  CAS  PubMed  Google Scholar 

  146. Varaldo PB, Miyaji EN, Vilar MM, Campos AS, Dias WO, Armoa GR, Tendler M, Leite LC, McIntosh D (2006) Mycobacterial codon optimization of the gene encoding the Sm14 antigen of Schistosoma mansoni in recombinant Mycobacterium bovis Bacille Calmette-Guerin enhances protein expression but not protection against cercarial challenge in mice. FEMS Immunol Med Microbiol 48:132–139

    Article  CAS  PubMed  Google Scholar 

  147. Supply P, Sutton P, Coughlan SN, Bilo K, Saman E, Trees AJ, Cesbron Delauw MF, Locht C (1999) Immunogenicity of recombinant BCG producing the GRA1 antigen from Toxoplasma gondii. Vaccine 17:705–714

    Article  CAS  PubMed  Google Scholar 

  148. Wang H, Liu Q, Liu K, Zhong W, Gao S, Jiang L, An N (2007) Immune response induced by recombinant Mycobacterium bovis BCG expressing ROP2 gene of Toxoplasma gondii. Parasitol Int 56:263–268

    Article  CAS  PubMed  Google Scholar 

  149. Wang Q, Li J, Zhang X, Liu Q, Liu C, Ma G, Cao L, Gong P, Cai Y, Zhang G (2009) Protective immunity of recombinant Mycobacterium bovis BCG expressing rhomboid gene against Eimeria tenella challenge. Vet Parasitol 160:198–203

    Article  CAS  PubMed  Google Scholar 

  150. Langermann S, Palaszynski S, Sadziene A, Stover CK, Koenig S (1994) Systemic and mucosal immunity induced by BCG vector expressing outer-surface protein A of Borrelia burgdorferi. Nature 372:552–555

    Article  CAS  PubMed  Google Scholar 

  151. Edelman R, Palmer K, Russ KG, Secrest HP, Becker JA, Bodison SA, Perry JG, Sills AR, Barbour AG, Luke CJ et al (1999) Safety and immunogenicity of recombinant Bacille Calmette-Guerin (rBCG) expressing Borrelia burgdorferi outer surface protein A (OspA) lipoprotein in adult volunteers: a candidate Lyme disease vaccine. Vaccine 17:904–914

    Article  CAS  PubMed  Google Scholar 

  152. Miller LA, Johns BE, Elias DJ, Killian GJ (1999) Oral vaccination of white-tailed deer using a recombinant Bacillus Calmette-Guerin vaccine expressing the Borrelia burgdorferi outer surface protein A: prospects for immunocontraception. Am J Reprod Immunol 41:279–285

    CAS  PubMed  Google Scholar 

  153. Langermann S, Palaszynski SR, Burlein JE, Koenig S, Hanson MS, Briles DE, Stover CK (1994) Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette-Guerin vaccines expressing pneumococcal surface protein A. J Exp Med 180:2277–2286

    Article  CAS  PubMed  Google Scholar 

  154. Seixas FK, da Silva EF, Hartwig DD, Cerqueira GM, Amaral M, Fagundes MQ, Dossa RG, Dellagostin OA (2007) Recombinant Mycobacterium bovis BCG expressing the LipL32 antigen of Leptospira interrogans protects hamsters from challenge. Vaccine 26:88–95

    Article  CAS  PubMed  Google Scholar 

  155. Seixas FK, Fernandes CH, Hartwig DD, Conceicao FR, Aleixo JA, Dellagostin OA (2007) Evaluation of different ways of presenting LipL32 to the immune system with the aim of developing a recombinant vaccine against leptospirosis. Can J Microbiol 53:472–479

    Article  CAS  PubMed  Google Scholar 

  156. Grode L, Kursar M, Fensterle J, Kaufmann SH, Hess J (2002) Cell-mediated immunity induced by recombinant Mycobacterium bovis Bacille Calmette-Guerin strains against an intracellular bacterial pathogen: importance of antigen secretion or membrane-targeted antigen display as lipoprotein for vaccine efficacy. J Immunol 168:1869–1876

    CAS  PubMed  Google Scholar 

  157. Abomoelak B, Huygen K, Kremer L, Turneer M, Locht C (1999) Humoral and cellular immune responses in mice immunized with recombinant Mycobacterium bovis Bacillus Calmette-Guerin producing a pertussis toxin-tetanus toxin hybrid protein. Infect Immun 67:5100–5105

    CAS  PubMed  Google Scholar 

  158. Medeiros MA, Armoa GR, Dellagostin OA, McIntosh D (2005) Induction of humoral immunity in response to immunization with recombinant Mycobacterium bovis BCG expressing the S1 subunit of Bordetella pertussis toxin. Can J Microbiol 51:1015–1020

    Article  CAS  PubMed  Google Scholar 

  159. Nascimento IP, Dias WO, Mazzantini RP, Miyaji EN, Gamberini M, Quintilio W, Gebara VC, Cardoso DF, Ho PL, Raw I et al (2000) Recombinant Mycobacterium bovis BCG expressing pertussis toxin subunit S1 induces protection against an intracerebral challenge with live Bordetella pertussis in mice. Infect Immun 68:4877–4883

    Article  CAS  PubMed  Google Scholar 

  160. Nascimento IP, Dias WO, Quintilio W, Christ AP, Moraes JF, Vancetto MD, Ribeiro-Dos-Santos G, Raw I, Leite LC (2008) Neonatal immunization with a single dose of recombinant BCG expressing subunit S1 from pertussis toxin induces complete protection against Bordetella pertussis intracerebral challenge. Microbes Infect 10:198–202

    Article  CAS  PubMed  Google Scholar 

  161. Miyaji EN, Mazzantini RP, Dias WO, Nascimento AL, Marcovistz R, Matos DS, Raw I, Winter N, Gicquel B, Rappuoli R et al (2001) Induction of neutralizing antibodies against diphtheria toxin by priming with recombinant Mycobacterium bovis BCG expressing CRM(197), a mutant diphtheria toxin. Infect Immun 69:869–874

    Article  CAS  PubMed  Google Scholar 

  162. Mazzantini RP, Miyaji EN, Dias WO, Sakauchi D, Nascimento AL, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LC (2004) Adjuvant activity of Mycobacterium bovis BCG expressing CRM197 on the immune response induced by BCG expressing tetanus toxin fragment C. Vaccine 22:740–746

    Article  CAS  PubMed  Google Scholar 

  163. Michelon A, Conceicao FR, Binsfeld PC, da Cunha CW, Moreira AN, Argondizzo AP, McIntosh D, Armoa GR, Campos AS, Farber M et al (2006) Immunogenicity of Mycobacterium bovis BCG expressing Anaplasma marginale MSP1a antigen. Vaccine 24:6332–6339

    Article  CAS  PubMed  Google Scholar 

  164. Biet F, Kremer L, Wolowczuk I, Delacre M, Locht C (2003) Immune response induced by recombinant Mycobacterium bovis BCG producing the cholera toxin B subunit. Infect Immun 71:2933–2937

    Article  CAS  PubMed  Google Scholar 

  165. Hayward CM, O'Gaora P, Young DB, Griffin GE, Thole J, Hirst TR, Castello-Branco LR, Lewis DJ (1999) Construction and murine immunogenicity of recombinant Bacille Calmette Guerin vaccines expressing the B subunit of Escherichia coli heat labile enterotoxin. Vaccine 17:1272–1281

    Article  CAS  PubMed  Google Scholar 

  166. Da Silva Ramos Rocha A, Conceicao FR, Grassmann AA, Lagranha VL, Dellagostin OA (2008) B subunit of Escherichia coli heat-labile enterotoxin as adjuvant of humoral immune response in recombinant BCG vaccination. Can J Microbiol 54:677–686

    Article  PubMed  CAS  Google Scholar 

  167. Dudani R, Chapdelaine Y, Faassen Hv H, Smith DK, Shen H, Krishnan L, Sad S (2002) Multiple mechanisms compensate to enhance tumor-protective CD8(+) T cell response in the long-term despite poor CD8(+) T cell priming initially: comparison between an acute versus a chronic intracellular bacterium expressing a model antigen. J Immunol 168:5737–5745

    CAS  PubMed  Google Scholar 

  168. Cheadle EJ, O'Donnell D, Selby PJ, Jackson AM (2005) Closely related mycobacterial strains demonstrate contrasting levels of efficacy as antitumor vaccines and are processed for major histocompatibility complex class I presentation by multiple routes in dendritic cells. Infect Immun 73:784–794

    Article  CAS  PubMed  Google Scholar 

  169. He J, Shen D, O'Donnell MA, Chang HR (2002) Induction of MUC1-specific cellular immunity by a recombinant BCG expressing human MUC1 and secreting IL2. Int J Oncol 20:1305–1311

    CAS  PubMed  Google Scholar 

  170. Yuan S, Shi C, Han W, Ling R, Li N, Wang T (2009) Effective anti-tumor responses induced by recombinant bacillus Calmette-Guerin vaccines based on different tandem repeats of MUC1 and GM-CSF. Eur J Cancer Prev 18:416–423

    Article  CAS  PubMed  Google Scholar 

  171. Chade DC, Borra RC, Nascimento IP, Villanova FE, Leite LC, Andrade E, Srougi M, Ramos KL, Andrade PM (2008) Immunomodulatory effects of recombinant BCG expressing pertussis toxin on TNF-alpha and IL-10 in a bladder cancer model. J Exp Clin Cancer Res 27:78

    Article  PubMed  CAS  Google Scholar 

  172. Janssen R, Kruisselbrink A, Hoogteijling L, Lamb JR, Young DB, Thole JE (2001) Analysis of recombinant mycobacteria as T helper type 1 vaccines in an allergy challenge model. Immunology 102:441–449

    Article  CAS  PubMed  Google Scholar 

  173. Joseph J, Saubi N, Pezzat E, Gatell JM (2006) Progress towards an HIV vaccine based on recombinant bacillus Calmette-Guerin: failures and challenges. Expert Rev Vaccines 5:827–838

    Article  CAS  PubMed  Google Scholar 

  174. Ohara N, Yamada T (2001) Recombinant BCG vaccines. Vaccine 19:4089–4098

    Article  CAS  PubMed  Google Scholar 

  175. Dennehy M, Williamson AL (2005) Factors influencing the immune response to foreign antigen expressed in recombinant BCG vaccines. Vaccine 23:1209–1224

    Article  CAS  PubMed  Google Scholar 

  176. Bastos RG, Borsuk S, Seixas FK, Dellagostin OA (2009) Recombinant Mycobacterium bovis BCG. Vaccine 27:6495–6503

    Article  CAS  PubMed  Google Scholar 

  177. Walker BD, Burton DR (2008) Toward an AIDS vaccine. Science 320:760–764

    Article  CAS  PubMed  Google Scholar 

  178. Barouch DH (2008) Challenges in the development of an HIV-1 vaccine. Nature 455:613–619

    Article  CAS  PubMed  Google Scholar 

  179. Hanke T, McMichael AJ (2000) Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 6:951–955

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on TB vaccines in this laboratory is supported by Grants AI068413 and AI031338 from the National Institutes of Health. The Phase 1 trial of rBCG30 was sponsored by the Aeras Global TB Vaccine Foundation with funding from the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus A. Horwitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Tullius, M.V., Horwitz, M.A. (2011). New Generation BCG Vaccines. In: Dormitzer, P., Mandl, C., Rappuoli, R. (eds) Replicating Vaccines. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0277-8_6

Download citation

Publish with us

Policies and ethics