Skip to main content

Abelian Solutions of the Soliton Equations and Geometry of Abelian Varieties

  • Chapter
  • 569 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 280))

Abstract

We introduce the notion of abelian solutions of the 2D Toda lattice equations and the bilinear discrete Hirota equation, and show that all of them are algebro-geometric.

This research is supported in part by the National Science Foundation under the grant DMS-04-05519 (I.K.) and by the Japanese Ministry of Education, Culture, Sports, Science and Technology under the Grant-in-Aid for Scientific Research (S) 18104001 (T.S.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Airault, H. McKean, J. Moser, Rational and elliptic solutions of the Kortewegde Vries equation and related many-body problem. Commun. Pure Appl. Math. 30 (1977), no.1, 95–148.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Arbarello, C. De Concini, On a set of equations characterizing Riemann matrices. Ann. of Math. (2) 120 (1984), no.1, 119–140.

    Article  MathSciNet  Google Scholar 

  3. E. Arbarello, C. De Concini, Another proof of a conjecture of S.P. Novikov on periods of abelian integrals on Riemann surfaces. Duke Math. Journal, 54 (1987), 163–178.

    Article  MATH  Google Scholar 

  4. O. Babelon, E. Billey, I. Krichever, M. Talon, Spin generalisation of the Calogero-Moser system and the matrix KP equation. In “Topics in Topology and Mathematical Physics”, Amer. Math. Soc. Transl. Ser. 2 170, Amer. Math. Soc., Providence, 1995, 83–119.

    Google Scholar 

  5. D. Ben-Zvi, T. Nevins, Flows of Calogero-Moser Systems. Int. Math. Res. Not. Vol. 2007, Art. ID rnm105, 38 pp.

    Google Scholar 

  6. J.L. Burchnall, T.W. Chaundy, Commutative ordinary differential operators I. Proc. London Math Soc. 21 (1922), 420–440.

    Article  Google Scholar 

  7. J.L. Burchnall, T.W. Chaundy, Commutative ordinary differential operators II. Proc. Royal Soc. London 118 (1928), 557–583.

    Article  Google Scholar 

  8. J.D. Fay, Theta functions on Riemann surfaces. Lecture Notes in Mathematics, Vol. 352. Springer-Verlag, Berlin-New York, 1973.

    MATH  Google Scholar 

  9. R. Gunning, Some curves in abelian varieties. Invent. Math. 66 (1982), no.3, 377–389.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Gorsky, N. Nekrasov, Hamiltonian systems of Calogero-type, and two-dimensional Yang-Mills theory. Nuclear Phys. B 414 (1994), no.1–2, 213–238.

    MATH  MathSciNet  Google Scholar 

  11. I.M. Krichever, Integration of non-linear equations by methods of algebraic geometry. Funct. Anal. Appl. 11 (1977), no.1, 12–26.

    Article  MATH  Google Scholar 

  12. I.M. Krichever, Methods of algebraic geometry in the theory of non-linear equations. Russian Math. Surveys, 32 (1977), no.6, 185–213.

    Article  MATH  Google Scholar 

  13. I. Krichever, Algebraic curves and non-linear difference equation. Uspekhi Mat. Nauk 33 (1978), no.4, 215–216.

    MATH  MathSciNet  Google Scholar 

  14. I. Krichever, Elliptic solutions of Kadomtsev-Petviashvili equations and integrable systems of particles. (In Russian), Funct. Anal. Appl. 14 (1980), no.1, 45–54. Transl. 282–290.

    MATH  MathSciNet  Google Scholar 

  15. I. Krichever, The periodic nonabelian Toda lattice and two-dimensional generalization. appendix to: B. Dubrovin, Theta-functions and nonlinear equations. Uspekhi Mat. Nauk 36 (1981), no.2, 72–77.

    MathSciNet  Google Scholar 

  16. I. Krichever, Two-dimensional periodic difference operators and algebraic geometry. Doklady Akad. Nauk USSR 285 (1985), no.1, 31–36.

    MathSciNet  Google Scholar 

  17. I. Krichever, Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations. Calogero-Moser-Sutherland models (Montreal, QC, 1997), 249–271, CRM Ser. Math. Phys., Springer, New York, 2000.

    Google Scholar 

  18. I. Krichever, Elliptic analog of the Toda lattice. Int. Math. Res. Not. (2000), no.8, 383–412.

    Google Scholar 

  19. I. Krichever, Vector bundles and Lax equations on algebraic curves. Comm. Math. Phys. 229 (2002), no.2, 229–269.

    Article  MATH  MathSciNet  Google Scholar 

  20. I. Krichever, Integrable linear equations and the Riemann-Schottky problem. Algebraic geometry and number theory, 497–514, Progr. Math. 253, Birkhäuser Boston, Boston, MA, 2006.

    Google Scholar 

  21. I. Krichever, Characterizing Jacobians via trisecants of the Kummer Variety. math.AG /0605625.

    Google Scholar 

  22. I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin. Quantum integrable models and discrete classical Hirota equations. Comm. Math. Phys.188 (1997), no.2, 267–304.

    Article  MATH  MathSciNet  Google Scholar 

  23. I. Krichever, T. Shiota, Abelian solutions of the KP equation. Amer. Math. Soc. Transl. (2) 224 (2008), 173–191.

    MathSciNet  Google Scholar 

  24. I. Krichever, A. Zabrodin, Spin generalisation of the Ruijsenaars-Schneider model, the nonabelian two-dimensionalized Toda lattice, and representations of the Sklyanin algebra. (In Russian), Uspekhi Mat. Nauk, 50 (1995), no.6, 3–56.

    MathSciNet  Google Scholar 

  25. T. Shiota, Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (1986), 333–382.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations. in: Proceedings Int. Symp. Algebraic Geometry, Kyoto, 1977, Kinokuniya Book Store, Tokyo, 1978, pp. 115–153.

    Google Scholar 

  27. S.N.M. Ruijsenaars, H. Schneider, A new class of integrable systems and its relation to solitons. Ann. Physics 170 (1986), 370–405.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.-P. Serre, Faisceaux algébriques cohérents. Ann. of Math. (2) 61 (1955), 197–278.

    Article  MathSciNet  Google Scholar 

  29. G.E. Welters, On flexes of the Kummer variety (note on a theorem of R.C. Gunning). Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no.4, 501–520.

    MATH  MathSciNet  Google Scholar 

  30. G.E. Welters, A criterion for Jacobi varieties. Ann. of Math. 120 (1984), no.3, 497–504.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Krichever, I., Shiota, T. (2010). Abelian Solutions of the Soliton Equations and Geometry of Abelian Varieties. In: Alonso, M.E., Arrondo, E., Mallavibarrena, R., Sols, I. (eds) Liaison, Schottky Problem and Invariant Theory. Progress in Mathematics, vol 280. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0201-3_11

Download citation

Publish with us

Policies and ethics